程序员必知必会的十大排序算法

开发 前端 算法
身为程序员,十大排序是是所有合格程序员所必备和掌握的,并且热门的算法比如快排、归并排序还可能问的比较细致,对算法性能和复杂度的掌握有要求。

绪论

身为程序员,十大排序是是所有合格程序员所必备和掌握的,并且热门的算法比如快排、归并排序还可能问的比较细致,对算法性能和复杂度的掌握有要求。bigsai作为一个负责任的Java和数据结构与算法方向的小博主,在这方面肯定不能让读者们有所漏洞。跟着本篇走,带你捋一捋常见的十大排序算法,轻轻松松掌握!

首先对于排序来说大多数人对排序的概念停留在冒泡排序或者JDK中的Arrays.sort(),手写各种排序对很多人来说都是一种奢望,更别说十大排序算法了,不过还好你遇到了本篇文章!

对于排序的分类,主要不同的维度比如复杂度来分、内外部、比较非比较等维度来分类。我们正常讲的十大排序算法是内部排序,我们更多将他们分为两大类:基于 「比较和非比较」 这个维度去分排序种类。

  • 「非比较类的有桶排序、基数排序、计数排序」。也有很多人将排序归纳为8大排序,那就是因为基数排序、计数排序是建立在桶排序之上或者是一种特殊的桶排序,但是基数排序和计数排序有它特有的特征,所以在这里就将他们归纳为10种经典排序算法。而比较类排序也可分为

  • 比较类排序也有更细致的分法,有基于交换的、基于插入的、基于选择的、基于归并的,更细致的可以看下面的脑图。

 

 

冒泡排序

冒泡排序,又称起泡排序,它是一种基于交换的排序典型,也是快排思想的基础,冒泡排序是一种稳定排序算法,时间复杂度为O(n^2).基本思想是: 「循环遍历多次每次从前往后把大元素往后调,每次确定一个最大(最小)元素,多次后达到排序序列。」 (或者从后向前把小元素往前调)。

具体思想为(把大元素往后调):

  • 从第一个元素开始往后遍历,每到一个位置判断是否比后面的元素大,如果比后面元素大,那么就交换两者大小,然后继续向后,这样的话进行一轮之后就可以保证 「最大的那个数被交换交换到最末的位置可以确定」 。

  • 第二次同样从开始起向后判断着前进,如果当前位置比后面一个位置更大的那么就和他后面的那个数交换。但是有点注意的是,这次并不需要判断到最后,只需要判断到倒数第二个位置就行(因为第一次我们已经确定最大的在倒数第一,这次的目的是确定倒数第二)

  • 同理,后面的遍历长度每次减一,直到第一个元素使得整个元素有序。

例如 2 5 3 1 4 排序过程如下:

 

 

实现代码为:

  1. public void  maopaosort(int[] a) { 
  2.   // TODO Auto-generated method stub 
  3.   for(int i=a.length-1;i>=0;i--) 
  4.   { 
  5.     for(int j=0;j<i;j++) 
  6.     { 
  7.       if(a[j]>a[j+1]) 
  8.       { 
  9.         int team=a[j]; 
  10.         a[j]=a[j+1]; 
  11.         a[j+1]=team; 
  12.       } 
  13.     } 
  14.   } 

快速排序

快速排序是对冒泡排序的一种改进,采用递归分治的方法进行求解。而快排相比冒泡是一种不稳定排序,时间复杂度最坏是O(n^2),平均时间复杂度为O(nlogn),最好情况的时间复杂度为O(nlogn)。

对于快排来说, 「基本思想」 是这样的

  • 快排需要将序列变成两个部分,就是 「序列左边全部小于一个数」 , 「序列右面全部大于一个数」 ,然后利用递归的思想再将左序列当成一个完整的序列再进行排序,同样把序列的右侧也当成一个完整的序列进行排序。

  • 其中这个数在这个序列中是可以随机取的,可以取最左边,可以取最右边,当然也可以取随机数。但是 「通常」 不优化情况我们取最左边的那个数。

 

 

实现代码为:

  1. public void quicksort(int [] a,int left,int right) 
  2.   int low=left; 
  3.   int high=right; 
  4.   //下面两句的顺序一定不能混,否则会产生数组越界!!!very important!!! 
  5.   if(low>high)//作为判断是否截止条件 
  6.     return
  7.   int k=a[low];//额外空间k,取最左侧的一个作为衡量,最后要求左侧都比它小,右侧都比它大。 
  8.   while(low<high)//这一轮要求把左侧小于a[low],右侧大于a[low]。 
  9.   { 
  10.     while(low<high&&a[high]>=k)//右侧找到第一个小于k的停止 
  11.     { 
  12.       high--; 
  13.     } 
  14.     //这样就找到第一个比它小的了 
  15.     a[low]=a[high];//放到low位置 
  16.     while(low<high&&a[low]<=k)//在low往右找到第一个大于k的,放到右侧a[high]位置 
  17.     { 
  18.       low++; 
  19.     } 
  20.     a[high]=a[low];    
  21.   } 
  22.   a[low]=k;//赋值然后左右递归分治求之 
  23.   quicksort(a, left, low-1); 
  24.   quicksort(a, low+1, right);   

插入类排序

直接插入排序

直接插入排序在所有排序算法中的是最简单排序方式之一。和我们上学时候 从前往后、按高矮顺序排序,那么一堆高低无序的人群中,从第一个开始,如果前面有比自己高的,就直接插入到合适的位置。 「一直到队伍的最后一个完成插入」 整个队列才能满足有序。

直接插入排序遍历比较时间复杂度是每次O(n),交换的时间复杂度每次也是O(n),那么n次总共的时间复杂度就是O(n^2)。有人会问折半(二分)插入能否优化成O(nlogn),答案是不能的。因为二分只能减少查找复杂度每次为O(logn),而插入的时间复杂度每次为O(n)级别,这样总的时间复杂度级别还是O(n^2).

插入排序的具体步骤:

  • 选取当前位置(当前位置前面已经有序) 目标就是将当前位置数据插入到前面合适位置。

  • 向前枚举或者二分查找,找到待插入的位置。

  • 移动数组,赋值交换,达到插入效果。

 

 

实现代码为:

  1. public void insertsort (int a[]) 
  2.   int team=0
  3.   for(int i=1;i<a.length;i++) 
  4.   { 
  5.     System.out.println(Arrays.toString(a)); 
  6.     team=a[i]; 
  7.     for(int j=i-1;j>=0;j--) 
  8.     { 
  9.  
  10.       if(a[j]>team) 
  11.       { 
  12.         a[j+1]=a[j]; 
  13.         a[j]=team;  
  14.       }  
  15.       else { 
  16.         break
  17.       } 
  18.     } 
  19.   }  

希尔排序

直接插入排序因为是O(n^2),在数据量很大或者数据移动位次太多会导致效率太低。很多排序都会想办法拆分序列,然后组合,希尔排序就是以一种特殊的方式进行预处理,考虑到了 「数据量和有序性」 两个方面纬度来设计算法。使得序列前后之间小的尽量在前面,大的尽量在后面,进行若干次的分组别计算,最后一组即是一趟完整的直接插入排序。

对于一个 长串 ,希尔首先将序列分割(非线性分割)而是 「按照某个数模」 ( 取余 这个类似报数1、2、3、4。1、2、3、4)这样形式上在一组的分割先 「各组分别进行直接插入排序」 ,这样 「很小的数在后面」 可以通过 「较少的次数移动到相对靠前」 的位置。然后慢慢合并变长,再稍稍移动。

因为每次这样插入都会使得序列变得更加有序,稍微有序序列执行直接插入排序成本并不高。所以这样能够在合并到最终的时候基本小的在前,大的在后,代价越来越小。这样希尔排序相比插入排序还是能节省不少时间的。

 

 

实现代码为:

  1. public void shellsort (int a[]) 
  2.   int d=a.length; 
  3.   int team=0;//临时变量 
  4.   for(;d>=1;d/=2)//共分成d组 
  5.     for(int i=d;i<a.length;i++)//到那个元素就看这个元素在的那个组即可 
  6.     { 
  7.       team=a[i]; 
  8.       for(int j=i-d;j>=0;j-=d) 
  9.       {     
  10.         if(a[j]>team) 
  11.         { 
  12.           a[j+d]=a[j]; 
  13.           a[j]=team;  
  14.         } 
  15.         else { 
  16.           break
  17.         } 
  18.       } 
  19.     }  

选择类排序

简单选择排序

简单选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到 「已排序序列的末尾」 。以此类推,直到所有元素均排序完毕。

 

 

实现代码为:

  1. public void selectSort(int[] arr) { 
  2.   for (int i = 0; i < arr.length - 1; i++) { 
  3.     int min = i; // 最小位置 
  4.     for (int j = i + 1; j < arr.length; j++) { 
  5.       if (arr[j] < arr[min]) { 
  6.         min = j; // 更换最小位置 
  7.       } 
  8.     } 
  9.     if (min != i) { 
  10.       swap(arr, i, min); // 与第i个位置进行交换 
  11.     } 
  12.   } 
  13. private void swap(int[] arr, int i, int j) { 
  14.   int temp = arr[i]; 
  15.   arr[i] = arr[j]; 
  16.   arr[j] = temp; 

对于堆排序,首先是建立在堆的基础上,堆是一棵完全二叉树,还要先认识下大根堆和小根堆,完全二叉树中所有节点均大于(或小于)它的孩子节点,所以这里就分为两种情况

  • 如果所有节点 「大于」 孩子节点值,那么这个堆叫做 「大根堆」 ,堆的最大值在根节点。

  • 如果所有节点 「小于」 孩子节点值,那么这个堆叫做 「小根堆」 ,堆的最小值在根节点。

 

 

堆排序首先就是 「建堆」 ,然后再是调整。对于二叉树(数组表示),我们从下往上进行调整,从 「第一个非叶子节点」 开始向前调整,对于调整的规则如下:

建堆是一个O(n)的时间复杂度过程,建堆完成后就需要进行删除头排序。给定数组建堆(creatHeap)

①从第一个非叶子节点开始判断交换下移(shiftDown),使得当前节点和子孩子能够保持堆的性质

②但是普通节点替换可能没问题,对如果交换打破子孩子堆结构性质,那么就要重新下移(shiftDown)被交换的节点一直到停止。

 

 

堆构造完成,取第一个堆顶元素为最小(最大),剩下左右孩子依然满足堆的性值,但是缺个堆顶元素,如果给孩子调上来,可能会调动太多并且可能破坏堆结构。

①所以索性把最后一个元素放到第一位。这样只需要判断交换下移(shiftDown),不过需要注意此时整个堆的大小已经发生了变化,我们在逻辑上不会使用被抛弃的位置,所以在设计函数的时候需要附带一个堆大小的参数。

②重复以上操作,一直堆中所有元素都被取得停止。

 

 

而堆算法复杂度的分析上,之前建堆时间复杂度是O(n)。而每次删除堆顶然后需要向下交换,每个个数最坏为logn个。这样复杂度就为O(nlogn).总的时间复杂度为O(n)+O(nlogn)=O(nlogn).

实现代码为:

  1. static void swap(int arr[],int m,int n) 
  2.   int team=arr[m]; 
  3.   arr[m]=arr[n]; 
  4.   arr[n]=team; 
  5. //下移交换 把当前节点有效变换成一个堆(小根) 
  6. static void shiftDown(int arr[],int index,int len)//0 号位置不用 
  7.   int leftchild=index*2+1;//左孩子 
  8.   int rightchild=index*2+2;//右孩子 
  9.   if(leftchild>=len) 
  10.     return
  11.   else if(rightchild<len&&arr[rightchild]<arr[index]&&arr[rightchild]<arr[leftchild])//右孩子在范围内并且应该交换 
  12.   { 
  13.     swap(arr, index, rightchild);//交换节点值 
  14.     shiftDown(arr, rightchild, len);//可能会对孩子节点的堆有影响,向下重构 
  15.   } 
  16.   else if(arr[leftchild]<arr[index])//交换左孩子 
  17.   { 
  18.     swap(arr, index, leftchild); 
  19.     shiftDown(arr, leftchild, len); 
  20.   } 
  21. //将数组创建成堆 
  22. static void creatHeap(int arr[]) 
  23.   for(int i=arr.length/2;i>=0;i--) 
  24.   { 
  25.     shiftDown(arr, i,arr.length); 
  26.   } 
  27. static void heapSort(int arr[]) 
  28.   System.out.println("原始数组为         :"+Arrays.toString(arr)); 
  29.   int val[]=new int[arr.length]; //临时储存结果 
  30.   //step1建堆 
  31.   creatHeap(arr); 
  32.   System.out.println("建堆后的序列为  :"+Arrays.toString(arr)); 
  33.   //step2 进行n次取值建堆,每次取堆顶元素放到val数组中,最终结果即为一个递增排序的序列 
  34.   for(int i=0;i<arr.length;i++) 
  35.   { 
  36.     val[i]=arr[0];//将堆顶放入结果中 
  37.     arr[0]=arr[arr.length-1-i];//删除堆顶元素,将末尾元素放到堆顶 
  38.     shiftDown(arr, 0, arr.length-i);//将这个堆调整为合法的小根堆,注意(逻辑上的)长度有变化 
  39.   } 
  40.   //数值克隆复制 
  41.   for(int i=0;i<arr.length;i++) 
  42.   { 
  43.     arr[i]=val[i]; 
  44.   } 
  45.   System.out.println("堆排序后的序列为:"+Arrays.toString(arr)); 
  46.  

归并类排序

在归并类排序一般只讲归并排序,但是归并排序也分二路归并、多路归并,这里就讲较多的二路归并排序,且用递归方式实现。

归并排序

归并和快排都是 「基于分治算法」 的,分治算法其实应用挺多的,很多分治会用到递归,但事实上 「分治和递归是两把事」 。分治就是分而治之,可以采用递归实现,也可以自己遍历实现非递归方式。而归并排序就是先将问题分解成代价较小的子问题,子问题再采取代价较小的合并方式完成一个排序。

至于归并的思想是这样的:

  • 第一次:整串先进行划分成一个一个单独,第一次是将序列中( 1 2 3 4 5 6--- )两两归并成有序,归并完( xx xx xx xx---- )这样局部有序的序列。
  • 第二次就是两两归并成若干四个( 1 2 3 4 5 6 7 8 ---- ) 「每个小局部是有序的」 。
  • 就这样一直到最后这个串串只剩一个,然而这个耗费的总次数logn。每次操作的时间复杂的又是 O(n) 。所以总共的时间复杂度为 O(nlogn) .

 

 

合并为一个O(n)的过程:

 

 

实现代码为:

  1. private static void mergesort(int[] array, int left, int right) { 
  2.   int mid=(left+right)/2
  3.   if(left<right) 
  4.   { 
  5.     mergesort(array, left, mid); 
  6.     mergesort(array, mid+1, right); 
  7.     merge(array, left,mid, right); 
  8.   } 
  9.  
  10. private static void merge(int[] array, int l, int mid, int r) { 
  11.   int lindex=l;int rindex=mid+1
  12.   int team[]=new int[r-l+1]; 
  13.   int teamindex=0
  14.   while (lindex<=mid&&rindex<=r) {//先左右比较合并 
  15.     if(array[lindex]<=array[rindex]) 
  16.     { 
  17.       team[teamindex++]=array[lindex++]; 
  18.     } 
  19.     else {     
  20.       team[teamindex++]=array[rindex++]; 
  21.     } 
  22.   } 
  23.   while(lindex<=mid)//当一个越界后剩余按序列添加即可 
  24.   { 
  25.     team[teamindex++]=array[lindex++]; 
  26.  
  27.   } 
  28.   while(rindex<=r) 
  29.   { 
  30.     team[teamindex++]=array[rindex++]; 
  31.   }  
  32.   for(int i=0;i<teamindex;i++) 
  33.   { 
  34.     array[l+i]=team[i]; 
  35.   } 
  36.  

桶类排序

桶排序是一种用空间换取时间的排序,桶排序重要的是它的思想,而不是具体实现,时间复杂度最好可能是线性O(n),桶排序不是基于比较的排序而是一种分配式的。桶排序从字面的意思上看:

  • 桶:若干个桶,说明此类排序将数据放入若干个桶中。

  • 桶:每个桶有容量,桶是有一定容积的容器,所以每个桶中可能有多个元素。

  • 桶:从整体来看,整个排序更希望桶能够更匀称,即既不溢出(太多)又不太少。

桶排序的思想为: 「将待排序的序列分到若干个桶中,每个桶内的元素再进行个别排序。」 当然桶排序选择的方案跟具体的数据有关系,桶排序是一个比较广泛的概念,并且计数排序是一种特殊的桶排序,基数排序也是建立在桶排序的基础上。在数据分布均匀且每个桶元素趋近一个时间复杂度能达到O(n),但是如果数据范围较大且相对集中就不太适合使用桶排序。

 

 

实现一个简单桶排序:

  1. import java.util.ArrayList; 
  2. import java.util.List; 
  3. //微信公众号:bigsai 
  4. public class bucketSort { 
  5.  public static void main(String[] args) { 
  6.   int a[]= {1,8,7,44,42,46,38,34,33,17,15,16,27,28,24}; 
  7.   List[] buckets=new ArrayList[5]; 
  8.   for(int i=0;i<buckets.length;i++)//初始化 
  9.   { 
  10.    buckets[i]=new ArrayList<Integer>(); 
  11.   } 
  12.   for(int i=0;i<a.length;i++)//将待排序序列放入对应桶中 
  13.   { 
  14.    int index=a[i]/10;//对应的桶号 
  15.    buckets[index].add(a[i]); 
  16.   } 
  17.   for(int i=0;i<buckets.length;i++)//每个桶内进行排序(使用系统自带快排) 
  18.   { 
  19.    buckets[i].sort(null); 
  20.    for(int j=0;j<buckets[i].size();j++)//顺便打印输出 
  21.    { 
  22.     System.out.print(buckets[i].get(j)+" "); 
  23.    } 
  24.   }  
  25.  } 

计数排序

计数排序是一种特殊的桶排序,每个桶的大小为1,每个桶不在用List表示,而通常用一个值用来计数。

在 「设计具体算法的时候」 ,先找到最小值min,再找最大值max。然后创建这个区间大小的数组,从min的位置开始计数,这样就可以最大程度的压缩空间,提高空间的使用效率。

 

 

  1. public static void countSort(int a[]) 
  2.   int min=Integer.MAX_VALUE;int max=Integer.MIN_VALUE; 
  3.   for(int i=0;i<a.length;i++)//找到max和min 
  4.   { 
  5.     if(a[i]<min)  
  6.       min=a[i]; 
  7.     if(a[i]>max) 
  8.       max=a[i]; 
  9.   } 
  10.   int count[]=new int[max-min+1];//对元素进行计数 
  11.   for(int i=0;i<a.length;i++) 
  12.   { 
  13.     count[a[i]-min]++; 
  14.   } 
  15.   //排序取值 
  16.   int index=0
  17.   for(int i=0;i<count.length;i++) 
  18.   { 
  19.     while (count[i]-->0) { 
  20.       a[index++]=i+min;//有min才是真正值 
  21.     } 
  22.   } 

 

基数排序

基数排序是一种很容易理解但是比较难实现(优化)的算法。基数排序也称为卡片排序,基数排序的原理就是多次利用计数排序(计数排序是一种特殊的桶排序),但是和前面的普通桶排序和计数排序有所区别的是, 「基数排序并不是将一个整体分配到一个桶中」 ,而是将自身拆分成一个个组成的元素,每个元素分别顺序分配放入桶中、顺序收集,当从前往后或者从后往前每个位置都进行过这样顺序的分配、收集后,就获得了一个有序的数列。

 

 

如果是数字类型排序,那么这个桶只需要装0-9大小的数字,但是如果是字符类型,那么就需要注意ASCII的范围。

所以遇到这种情况我们基数排序思想很简单,就拿 934,241,3366,4399这几个数字进行基数排序的一趟过程来看,第一次会根据各位进行分配、收集:

 

 

分配和收集都是有序的,第二次会根据十位进行分配、收集,此次是在第一次个位分配、收集基础上进行的,所以所有数字单看个位十位是有序的。

 

 

而第三次就是对百位进行分配收集,此次完成之后百位及其以下是有序的。

 

 

而最后一次的时候进行处理的时候,千位有的数字需要补零,这次完毕后后千位及以后都有序,即整个序列排序完成。

 

 

简单实现代码为:

  1. static void radixSort(int[] arr)//int 类型 从右往左 
  2.   List<Integer>bucket[]=new ArrayList[10]; 
  3.   for(int i=0;i<10;i++) 
  4.   { 
  5.     bucket[i]=new ArrayList<Integer>(); 
  6.   } 
  7.   //找到最大值 
  8.   int max=0;//假设都是正数 
  9.   for(int i=0;i<arr.length;i++) 
  10.   { 
  11.     if(arr[i]>max) 
  12.       max=arr[i]; 
  13.   } 
  14.   int divideNum=1;//1 10 100 100……用来求对应位的数字 
  15.   while (max>0) {//max 和num 控制 
  16.     for(int num:arr) 
  17.     { 
  18.       bucket[(num/divideNum)%10].add(num);//分配 将对应位置的数字放到对应bucket中 
  19.     } 
  20.     divideNum*=10
  21.     max/=10
  22.     int idx=0
  23.     //收集 重新捡起数据 
  24.     for(List<Integer>list:bucket) 
  25.     { 
  26.       for(int num:list) 
  27.       { 
  28.         arr[idx++]=num; 
  29.       } 
  30.       list.clear();//收集完需要清空留下次继续使用 
  31.     } 
  32.   } 

当然,基数排序还有字符串等长、不等长、一维数组优化等各种实现需要需学习,具体可以参考公众号内其他文章。

本次十大排序就这么潇洒的过了一遍,我想大家都应该有所领悟了吧!对于算法总结,避免不必要的劳动力,我分享这个表格给大家:

排序算法 平均时间复杂度 最好 最坏 空间复杂度 稳定性
冒泡排序 O(n^2) O(n) O(n^2) O(1) 稳定
快速排序 O(nlogn) O(nlogn) O(n^2) O(logn) 不稳定
插入排序 O(n^2) O(n) O(n^2) O(1) 稳定
希尔排序 O(n^1.3) O(n) O(nlog2n) O(1) 不稳定
选择排序 O(n^2) O(n^2) O(n^2) O(1) 不稳定
堆排序 O(nlogn) O(nlogn) O(nlogn) O(1) 不稳定
归并排序 O(nlogn) O(nlogn) O(nlogn) O(n) 稳定
桶排序 O(n+k) O(n+k) O(n+k) O(n+k) 稳定
计数排序 O(n+k) O(n+k) O(n+k) O(k) 稳定
基数排序 O(n*k) O(n*k) O(n*k) O(n+k) 稳定

 

责任编辑:张燕妮 来源: bigsai
相关推荐

2012-06-28 14:01:30

Java程序员排序

2022-08-26 14:46:31

机器学习算法线性回归

2019-01-30 14:14:16

LinuxUNIX操作系统

2023-09-12 11:25:15

2021-08-25 09:59:00

开发排序代码

2020-05-13 11:20:57

MySQL规范数据库

2014-09-19 09:27:46

程序员

2017-04-17 20:00:38

程序员开发算法

2012-09-28 10:09:35

程序员码农谎言

2014-02-09 10:30:17

Python程序员工具

2019-05-29 17:45:32

JavaScript算法思路代码实现

2018-09-18 10:56:52

Android开发http

2017-04-18 09:46:31

机器学习工程师算法

2024-12-03 13:19:47

2024-03-05 15:45:10

2023-05-11 08:01:08

Code开发保护机制

2010-05-31 09:18:42

程序员文档注释

2019-07-05 07:49:19

TCPIP网络协议

2022-04-14 09:30:22

深度学习激活函数人工神经

2024-05-30 07:34:42

点赞
收藏

51CTO技术栈公众号