一 引用基本概念
如下面,定义两个变量num,str,存储模型大致如下图:
- int num = 6;
- String str = “浪尖聊大数据”;
变量num值直接从6修改为了8;变量str只是修改了其保存的地址,从0x88修改为0x86,对象 “浪尖聊大数据 ”本身还在内存中,并没有被修改。只是内存中新增了对象 “浪尖是帅哥”。
二 值传递&引用传递
举例说明引用传递和值传递:
- 第一个栗子:基本类型
- void foo(int value) {
- value = 88;
- }
- foo(num); // num 没有被改变
- 第二个栗子:没有提供改变自身方法的引用类型
- void foo(String text) {
- text = "mac";
- }
- foo(str); // str 也没有被改变
- 第三个栗子:提供了改变自身方法的引用类型
- StringBuilder sb = new StringBuilder("vivo");
- void foo(StringBuilder builder) {
- builder.append("5");
- }
- foo(sb); // sb 被改变了,变成了"vivo5"。
- 第四个栗子:提供了改变自身方法的引用类型,但是不使用,而是使用赋值运算符。
- StringBuilder sb = new StringBuilder("oppo");
- void foo(StringBuilder builder) {
- builder = new StringBuilder("vivo");
- }
- foo(sb); // sb 没有被改变,还是 "oppo"。
三 引用的类型
- 单纯的申明一个软引用,指向一个person对象
- 1 SoftReference pSoftReference=new SoftReference(new Person(“张三”,12));
- 声明一个引用队列
- ReferenceQueue<Person> queue = new ReferenceQueue<>();
- 声明一个person对象,李四,obj是其强引用
- Person obj = new Person(“李四”,13);
- 使软引用softRef指向李四对应的对象,并且将该软引用关联到引用队列
- 2 SoftReference softRef = new SoftReference<Object>(obj,queue);
- 声明一个person对象,名叫王酒,并保证其仅含软引用,且将软引用关联到引用队列queue
- 3 SoftReference softRef = new SoftReference<Object>(new Person(“王酒”,15),queue);
- 使用很简单softRef.get即可获取对应的value。
- WeakReference<Person> weakReference = new WeakReference<>(new Person(“浪尖”,18));
- 声明一个引用队列
- ReferenceQueue<Person> queue = new ReferenceQueue<>();
- 声明一个person对象,李四,obj是其强引用
- Person obj = new Person(“李四”,13);
- 声明一个弱引用,指向强引用obj所指向的对象,同时该引用绑定到引用队列queue。
- WeakReference weakRef = new WeakReference<Object>(obj,queue);
- 使用弱引用也很简单,weakRef.get
- 声明引用队列
- ReferenceQueue queue = new ReferenceQueue();
- 声明一个虚引用
- PhantomReference<Person> reference = new PhantomReference<Person>(new Person(“浪尖”,18), queue);
- 获取虚引用的值,直接为null,因为无法通过虚引用获取引用对象。
- System.out.println(reference.get());
四 Threadlocal如何使用弱引用
五 spark如何使用弱引用进行数据清理
shuffle相关的引用,实际上是在ShuffleDependency内部实现了,shuffle状态注册到ContextCleaner过程:
- _rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))
然后,我们翻开registerShuffleForCleanup函数源码可以看到,注释的大致意思是注册ShuffleDependency目的是在垃圾回收的时候清除掉它对应的数据:
- /** Register a ShuffleDependency for cleanup when it is garbage collected. */
- def registerShuffleForCleanup(shuffleDependency: ShuffleDependency[_, _, _]): Unit = {
- registerForCleanup(shuffleDependency, CleanShuffle(shuffleDependency.shuffleId))
- }
其中,registerForCleanup函数如下:
- /** Register an object for cleanup. */
- private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask): Unit = {
- referenceBuffer.add(new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue))
- }
referenceBuffer主要作用保存CleanupTaskWeakReference弱引用,确保在引用队列没处理前,弱引用不会被垃圾回收。
- /**
- * A buffer to ensure that `CleanupTaskWeakReference`s are not garbage collected as long as they
- * have not been handled by the reference queue.
- */
- private val referenceBuffer =
- Collections.newSetFromMap[CleanupTaskWeakReference](new ConcurrentHashMap)
ContextCleaner内部有一个线程,循环从引用队列里取被垃圾回收的RDD等相关弱引用,然后完成对应的数据清除工作。
- private val cleaningThread = new Thread() { override def run(): Unit = keepCleaning() }
其中,keepCleaning函数,如下:
- /** Keep cleaning RDD, shuffle, and broadcast state. */
- private def keepCleaning(): Unit = Utils.tryOrStopSparkContext(sc) {
- while (!stopped) {
- try {
- val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT))
- .map(_.asInstanceOf[CleanupTaskWeakReference])
- // Synchronize here to avoid being interrupted on stop()
- synchronized {
- reference.foreach { ref =>
- logDebug("Got cleaning task " + ref.task)
- referenceBuffer.remove(ref)
- ref.task match {
- case CleanRDD(rddId) =>
- doCleanupRDD(rddId, blocking = blockOnCleanupTasks)
- case CleanShuffle(shuffleId) =>
- doCleanupShuffle(shuffleId, blocking = blockOnShuffleCleanupTasks)
- case CleanBroadcast(broadcastId) =>
- doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)
- case CleanAccum(accId) =>
- doCleanupAccum(accId, blocking = blockOnCleanupTasks)
- case CleanCheckpoint(rddId) =>
- doCleanCheckpoint(rddId)
- }
- }
- }
- } catch {
- case ie: InterruptedException if stopped => // ignore
- case e: Exception => logError("Error in cleaning thread", e)
- }
- }
- }
shuffle数据清除的函数是doCleanupShuffle,具体内容如下:
- /** Perform shuffle cleanup. */
- def doCleanupShuffle(shuffleId: Int, blocking: Boolean): Unit = {
- try {
- logDebug("Cleaning shuffle " + shuffleId)
- mapOutputTrackerMaster.unregisterShuffle(shuffleId)
- shuffleDriverComponents.removeShuffle(shuffleId, blocking)
- listeners.asScala.foreach(_.shuffleCleaned(shuffleId))
- logDebug("Cleaned shuffle " + shuffleId)
- } catch {
- case e: Exception => logError("Error cleaning shuffle " + shuffleId, e)
- }
- }
细节就不细展开了。
ContextCleaner的start函数被调用后,实际上启动了一个调度线程,每隔30min主动调用了一次System.gc(),来触发垃圾回收。
- /** Start the cleaner. */
- def start(): Unit = {
- cleaningThread.setDaemon(true)
- cleaningThread.setName("Spark Context Cleaner")
- cleaningThread.start()
- periodicGCService.scheduleAtFixedRate(() => System.gc(),
- periodicGCInterval, periodicGCInterval, TimeUnit.SECONDS)
- }
具体参数是:
- spark.cleaner.periodicGC.interval
本文转载自微信公众号「浪尖聊大数据」,可以通过以下二维码关注。转载本文请联系浪尖聊大数据公众号。