用Python 通过动态规划完成公务员考试题

开发 后端
今天在脉脉上看到有人发了一道公务员的考试题,这道题可以用数学方法来做,但我离开学校很多年了,想不出数学的解法。不过看到题目的一瞬间,我就想到了可以使用动态规划来解决这个问题。

[[351065]]

今天在脉脉上看到有人发了一道公务员的考试题,题目如下:

这道题可以用数学方法来做,但我离开学校很多年了,想不出数学的解法。不过看到题目的一瞬间,我就想到了可以使用动态规划来解决这个问题。

我们把“家”的位置标记为(0, 0),把单位的位置标记为(4, 3),如下图所示:

动态规划的一个典型解法,就是想问题的时候,倒着想。假设现在我已经在单位(4, 3)了。我上一步是在哪里?要到(4, 3),只有两种方法,从(3, 3)到(4, 3)或者从(4, 2)到(4, 3)。现在问题的规模缩小了,变成了两个小问题,一个是从家(0, 0)到(4, 2)有多少种走法,另一个是从家(0, 0)到(3, 3)有多少种走法。

到这里,我们看出来这实际上是一个递归问题,也就是fn(x, y) = f(x - 1, y) + f(x, y - 1)。

不过,这里要考虑另一个问题,就是当我们在fn(x, 0)或者fn(0, y)的时候。如果 x > 1,那么此时只有一种走法,就是从(x-1, 0)到 (x, 0)。如果x == 1,那么此时只能是从(0, 0)到(1, 0)。同理,对于(0, y)也是一样,如果y > 1,那么只能从(0, y - 1)到(0, y)。如果y == 1,那么只能是从(0, 0)到(0, 1)。

于是,根据这个思路,我们可以写出如下的代码:

  1. def find_walk_num(x, y): 
  2.     if y == 0: 
  3.         if x == 1: 
  4.             return 1 
  5.         return find_walk_num(x - 1, 0) 
  6.     if x == 0: 
  7.         if y == 1: 
  8.             return 1 
  9.         return find_walk_num(0, y - 1) 
  10.     return find_walk_num(x - 1, y) + find_walk_num(x, y - 1) 
  11.  
  12. result = find_walk_num(4, 3) 
  13. print(f'从(0, 0)到(4, 3)的走法一共有:{result}种') 

运行效果如下图所示:

所以这道题的答案就是 D,一共有35种走法。

 

责任编辑:赵宁宁 来源: 未闻Code
相关推荐

2021-11-15 08:30:27

码农公务员同学

2023-01-04 12:49:28

GPT-3.5

2021-01-18 06:43:54

程序员公务员996

2015-10-21 16:27:45

公务员国考大数据

2009-09-29 09:22:00

CCNA考试题目分析CCNA

2010-12-07 13:37:42

2023-05-11 09:50:13

AI微软

2015-09-29 09:23:30

高富帅男朋友男神

2014-08-21 10:22:53

2017-08-11 15:08:46

码农公务员计算机

2009-10-10 15:36:00

CCNA考试题目CCNA

2021-08-25 09:33:16

算法开发技术

2019-04-17 15:55:00

程序员公务员

2009-09-27 10:41:38

CCNA认证

2009-09-15 14:27:57

CCNA考试题型

2018-06-14 15:22:54

大数据数据分析职业

2011-06-13 15:22:13

WPS金山软件

2015-05-14 11:09:34

微软Office 365

2011-05-24 09:19:42

seo

2012-04-11 10:32:45

点赞
收藏

51CTO技术栈公众号