懂了数据结构框架思维,一切算法不过是纸老虎

大数据 算法
数据结构的存储方式只有两种:数组(顺序存储)和链表(链式存储)。这句话怎么理解,不是还有散列表、栈、队列、堆、树、图等等各种数据结构吗?

一、数据结构的存储方式

数据结构的存储方式只有两种:数组(顺序存储)和链表(链式存储)。

这句话怎么理解,不是还有散列表、栈、队列、堆、树、图等等各种数据结构吗?

我们分析问题,一定要有递归的思想,自顶向下,从抽象到具体。你上来就列出这么多,那些都属于「上层建筑」,而数组和链表才是「结构基础」。因为那些多样化的数据结构,究其源头,都是在链表或者数组上的特殊操作,API 不同而已。

比如说「队列」、「栈」这两种数据结构既可以使用链表也可以使用数组实现。用数组实现,就要处理扩容缩容的问题;用链表实现,没有这个问题,但需要更多的内存空间存储节点指针。

「图」的两种表示方法,邻接表就是链表,邻接矩阵就是二维数组。邻接矩阵判断连通性迅速,并可以进行矩阵运算解决一些问题,但是如果图比较稀疏的话很耗费空间。邻接表比较节省空间,但是很多操作的效率上肯定比不过邻接矩阵。

「散列表」就是通过散列函数把键映射到一个大数组里。而且对于解决散列冲突的方法,拉链法需要链表特性,操作简单,但需要额外的空间存储指针;线性探查法就需要数组特性,以便连续寻址,不需要指针的存储空间,但操作稍微复杂些。

「树」,用数组实现就是「堆」,因为「堆」是一个完全二叉树,用数组存储不需要节点指针,操作也比较简单;用链表实现就是很常见的那种「树」,因为不一定是完全二叉树,所以不适合用数组存储。为此,在这种链表「树」结构之上,又衍生出各种巧妙的设计,比如二叉搜索树、AVL 树、红黑树、区间树、B 树等等,以应对不同的问题。

了解 Redis 数据库的朋友可能也知道,Redis 提供列表、字符串、集合等等几种常用数据结构,但是对于每种数据结构,底层的存储方式都至少有两种,以便于根据存储数据的实际情况使用合适的存储方式。

综上,数据结构种类很多,甚至你也可以发明自己的数据结构,但是底层存储无非数组或者链表,二者的优缺点如下:

数组由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。

链表因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题;如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度 O(1)。但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。

二、数据结构的基本操作

对于任何数据结构,其基本操作无非遍历 + 访问,再具体一点就是:增删查改。

数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。话说这不就是数据结构的使命么?

如何遍历 + 访问?我们仍然从最高层来看,各种数据结构的遍历 + 访问无非两种形式:线性的和非线性的。

线性就是 for/while 迭代为代表,非线性就是递归为代表。再具体一步,无非以下几种框架:

数组遍历框架,典型的线性迭代结构:

  1. void traverse(int[] arr) {    for (int i = 0; i < arr.length; i++) {        // 迭代访问 arr[i]    }} 

链表遍历框架,兼具迭代和递归结构:

 

  1. /* 基本的单链表节点 */class ListNode {    int val;    ListNode next;} 
  2. void traverse(ListNode head) {    for (ListNode p = head; p != null; p = p.next) {        // 迭代访问 p.val    }} 
  3. void traverse(ListNode head) {    // 递归访问 head.val    traverse(head.next);} 

二叉树遍历框架,典型的非线性递归遍历结构:

 

  1. /* 基本的二叉树节点 */class TreeNode {    int val;    TreeNode leftright;} 
  2. void traverse(TreeNode root) {    traverse(root.left);    traverse(root.right);} 

你看二叉树的递归遍历方式和链表的递归遍历方式,相似不?再看看二叉树结构和单链表结构,相似不?如果再多几条叉,N 叉树你会不会遍历?

二叉树框架可以扩展为 N 叉树的遍历框架:

 

  1. /* 基本的 N 叉树节点 */class TreeNode {    int val;    TreeNode[] children;} 
  2. void traverse(TreeNode root) {    for (TreeNode child : root.children)        traverse(child);} 

N 叉树的遍历又可以扩展为图的遍历,因为图就是好几 N 叉棵树的结合体。你说图是可能出现环的?这个很好办,用个布尔数组 visited 做标记就行了,这里就不写代码了。

所谓框架,就是套路。不管增删查改,这些代码都是永远无法脱离的结构,你可以把这个结构作为大纲,根据具体问题在框架上添加代码就行了,下面会具体举例。

三、算法刷题指南

首先要明确的是,数据结构是工具,算法是通过合适的工具解决特定问题的方法。也就是说,学习算法之前,最起码得了解那些常用的数据结构,了解它们的特性和缺陷。

那么该如何在 LeetCode 刷题呢?之前的文章算法学习之路写过一些,什么按标签刷,坚持下去云云。现在距那篇文章已经过去将近一年了,我不说那些不痛不痒的话,直接说具体的建议:

  • 先刷二叉树,先刷二叉树,先刷二叉树!

这是我这刷题一年的亲身体会,下图是去年十月份的提交截图:

公众号文章的阅读数据显示,大部分人对数据结构相关的算法文章不感兴趣,而是更关心动规回溯分治等等技巧。为什么要先刷二叉树呢,因为二叉树是最容易培养框架思维的,而且大部分算法技巧,本质上都是树的遍历问题。

刷二叉树看到题目没思路?根据很多读者的问题,其实大家不是没思路,只是没有理解我们说的「框架」是什么。不要小看这几行破代码,几乎所有二叉树的题目都是一套这个框架就出来了。

  1. void traverse(TreeNode root) {    // 前序遍历    traverse(root.left)    // 中序遍历    traverse(root.right)    // 后序遍历} 

比如说我随便拿几道题的解法出来,不用管具体的代码逻辑,只要看看框架在其中是如何发挥作用的就行。

LeetCode 124 题,难度 Hard,让你求二叉树中最大路径和,主要代码如下:

  1. int ans = INT_MIN;int oneSideMax(TreeNode* root) {    if (root ==  
  2. nullptr) return 0;    int left = max(0, oneSideMax(root->left));   
  3.   int right = max(0, oneSideMax(root->right));    ans = max(ans, left  
  4. right + root->val);    return max(leftright) + root->val;} 

你看,这就是个后序遍历嘛。

LeetCode 105 题,难度 Medium,让你根据前序遍历和中序遍历的结果还原一棵二叉树,很经典的问题吧,主要代码如下:

 

  1. TreeNode buildTree(int[] preorder, int preStart, int preEnd,     int[] inorder, int inStart, int inEnd, Map<IntegerInteger> inMap) { 
  2.     if(preStart > preEnd || inStart > inEnd) return null
  3.     TreeNode root = new TreeNode(preorder[preStart]);    int inRoot = inMap.get(root.val);    int numsLeft = inRoot - inStart; 
  4.     root.left = buildTree(preorder, preStart + 1, preStart + numsLeft,                           inorder, inStart, inRoot - 1, inMap);    root.right = buildTree(preorder, preStart + numsLeft + 1, preEnd,                           inorder, inRoot + 1, inEnd, inMap);    return root;} 

不要看这个函数的参数很多,只是为了控制数组索引而已,本质上该算法也就是一个前序遍历。

LeetCode 99 题,难度 Hard,恢复一棵 BST,主要代码如下:

  1. void traverse(TreeNode* node) {    if (!node) return;     
  2. traverse(node->left);    if (node->val < prev->val) {        s = (s  
  3. == NULL) ? prev : s;        t = node;    }    prev = node;     
  4. traverse(node->right);} 

这不就是个中序遍历嘛,对于一棵 BST 中序遍历意味着什么,应该不需要解释了吧。

你看,Hard 难度的题目不过如此,而且还这么有规律可循,只要把框架写出来,然后往相应的位置加东西就行了,这不就是思路吗。

对于一个理解二叉树的人来说,刷一道二叉树的题目花不了多长时间。那么如果你对刷题无从下手或者有畏惧心理,不妨从二叉树下手,前 10 道也许有点难受;结合框架再做 20 道,也许你就有点自己的理解了;刷完整个专题,再去做什么回溯动规分治专题,你就会发现只要涉及递归的问题,都是树的问题。

再举例吧,说几道我们之前文章写过的问题。

动态规划详解说过凑零钱问题,暴力解法就是遍历一棵 N 叉树:

 

  1. def coinChange(coins: List[int], amount: int): 
  2.     def dp(n):        if n == 0: return 0        if n < 0: return -1 
  3.         res = float('INF')        for coin in coins:            subproblem = dp(n - coin)            # 子问题无解,跳过            if subproblem == -1: continue            res = min(res, 1 + subproblem)        return res if res != float('INF'else -1 
  4.     return dp(amount) 

这么多代码看不懂咋办?直接提取出框架,就能看出核心思路了:

  1. # 不过是一个 N 叉树的遍历问题而已def dp(n):    for coin in coins:        dp(n - coin) 

其实很多动态规划问题就是在遍历一棵树,你如果对树的遍历操作烂熟于心,起码知道怎么把思路转化成代码,也知道如何提取别人解法的核心思路。

再看看回溯算法,前文回溯算法详解干脆直接说了,回溯算法就是个 N 叉树的前后序遍历问题,没有例外。

比如 N 皇后问题吧,主要代码如下:

 

  1. void backtrack(int[] nums, LinkedList<Integer> track) { 
  2.   if (track.size() == nums.length) { 
  3.     res.add(new LinkedList(track)); 
  4.     return;  
  5.   } 
  6.     for (int i = 0; i < nums.length; i++) {        if (track.contains(nums[i]))            continue;        track.add(nums[i]);        // 进入下一层决策树        backtrack(nums, track);        track.removeLast();    } 
  7. /* 提取出 N 叉树遍历框架 */void backtrack(int[] nums, LinkedList<Integer> track) {    for (int i = 0; i < nums.length; i++) {        backtrack(nums, track);} 

N 叉树的遍历框架,找出来了把~你说,树这种结构重不重要?

综上,对于畏惧算法的朋友来说,可以先刷树的相关题目,试着从框架上看问题,而不要纠结于细节问题。

纠结细节问题,就比如纠结 i 到底应该加到 n 还是加到 n - 1,这个数组的大小到底应该开 n 还是 n + 1 ?

从框架上看问题,就是像我们这样基于框架进行抽取和扩展,既可以在看别人解法时快速理解核心逻辑,也有助于找到我们自己写解法时的思路方向。

当然,如果细节出错,你得不到正确的答案,但是只要有框架,你再错也错不到哪去,因为你的方向是对的。

但是,你要是心中没有框架,那么你根本无法解题,给了你答案,你也不会发现这就是个树的遍历问题。

这种思维是很重要的,动态规划详解中总结的找状态转移方程的几步流程,有时候按照流程写出解法,说实话我自己都不知道为啥是对的,反正它就是对了。。。

这就是框架的力量,能够保证你在快睡着的时候,依然能写出正确的程序;就算你啥都不会,都能比别人高一个级别。

四、总结几句

数据结构的基本存储方式就是链式和顺序两种,基本操作就是增删查改,遍历方式无非迭代和递归。

刷算法题建议从「树」分类开始刷,结合框架思维,把这几十道题刷完,对于树结构的理解应该就到位了。这时候去看回溯、动规、分治等算法专题,对思路的理解可能会更加深刻一些。

责任编辑:未丽燕 来源: 今日头条
相关推荐

2017-11-14 13:48:26

数据结构学习

2016-08-31 17:24:05

大数据分析

2012-04-25 09:20:54

IT消费化托管

2012-11-05 15:22:59

康普光缆DCD

2011-07-11 09:51:06

专利微软Android

2018-06-03 08:48:36

2023-12-29 10:17:44

2012-12-31 11:22:58

开源开放

2020-12-31 13:06:54

大数据大数据应用

2020-09-11 10:55:10

useState组件前端

2013-10-21 10:42:32

微软大数据

2020-10-21 14:57:04

数据结构算法图形

2021-05-20 09:06:20

KafkaZookeeper分布式

2015-09-22 09:55:27

TalkingData大数据移动

2023-03-08 08:03:09

数据结构算法归并排序

2009-12-14 10:01:59

2022-08-31 16:29:09

数字孪生物联网

2023-07-18 10:38:09

2023-03-29 21:05:03

布线结构化布线

2023-10-27 07:04:20

点赞
收藏

51CTO技术栈公众号