数据分析的5种细分方法

大数据 数据分析
在数据分析工作中,细分思维的重要性,我认为再怎么强调都不为过。下面我们通过一些示例,介绍 5 种常见的细分方法。

在数据分析工作中,细分思维的重要性,我认为再怎么强调都不为过。

然而,很多人可能会采取一些「偷懒」的做法,浅尝辄止,不去寻找合适的细分方法,导致没有得出更有价值的分析结论。

下面我们通过一些示例,介绍 5 种常见的细分方法。

[[348224]]

1. 按时间细分

时间可以细分为不同的跨度,包括年、月、周、日、时、分、秒等等,不同的时间跨度,数据表现可能大不相同。

比如说,按照月度来看,产品的销量可能变化不大,但是如果细分到每一天,可能就有比较剧烈的变化,我们应该找到这些变化的数据,并分析变化背后的原因,而不是让它淹没在整月汇总数据的表象之中。

2. 按空间细分

空间主要是指按地域进行划分,包括世界、洲、国家、省份、城市、区等等。

比如说,把全国的 GDP 数据,细分到每一个省份。

空间作为一个相对抽象的概念,也可以代表其他与业务相关的各种事物,比如产品、人员、类别等等,只要有助于理解事物的本质,都可以尝试拿来进行细分。

3. 按过程细分

把业务细分为一些具体的过程,往往能够让复杂的问题简单化。

比如说,把订单发货细分为 5 个过程,想办法提升每个过程的效率,从而缩短发货的时间。

再比如,把用户的生命周期,细分为 5 个重要的过程,即:获取、激活、留存、盈利、推荐。

4. 按公式细分

有时候一个指标,是可以用公式计算出来的。

比如说,销售额 = 销售数量 * 平均单价,销售数量 = 新客户购买数量 + 老客户购买数量,以此类推。

再比如,在财务分析中,权益净利率 = 资产净利率 * 权益乘数,其中:资产净利率 = 销售净利率 * 资产周转率,以此类推。

5. 按模型细分

数据分析的模型有很多,我们可以根据业务的实际情况,选择合适的模型,在此基础上进行细分,得出相应的分析结论。

比如说,按照波士顿矩阵,把企业产品细分为「市场占有率」和「销售增长率」两个维度,然后画一个四象限矩阵图,其中每个象限就代表一类产品,即:明星产品、金牛产品、瘦狗产品和问题产品,对每一类产品,分别建议采取不同的发展策略。

再比如,按照 RFM 模型,把客户按三个维度进行细分,即:最近一次消费时间间隔(Recency)、消费频率(Frequency)和消费金额(Monetary),从而得到 8 种客户类别,从而有针对性地采取不同的营销策略。

小结

数据分析的目的,是为了解决问题、创造价值,不是为了分析而分析。

在运用细分思维解决问题的过程中,要做到有的放矢,围绕数据分析的目标,找到合适的方法,不要像无头苍蝇一样乱撞,更不要「偷懒」,当发现数据异常时,要多问几个为什么,尝试从不同的维度进行细分,这样既能锻炼你的数据分析思维,又能加深你对业务的理解。

上面介绍的 5 种细分方法,即:按时间细分、按空间细分、按过程细分、按公式细分和按模型细分,希望能够对你有所启发,建议你在实际工作中加以灵活运用。

 

责任编辑:赵宁宁 来源: 林骥
相关推荐

2019-01-16 18:39:24

数据开发模型

2020-12-22 15:33:42

数据分析技术IT

2022-09-07 15:47:21

数据分析对比分析大数据

2017-09-05 17:16:18

多维数据分析

2019-10-14 15:57:36

数据分析多维度二八法

2017-02-27 10:51:23

大数据分析方法

2021-08-18 09:11:59

统计学数据分析检验

2020-05-29 09:56:31

数据分析数据大数据

2017-09-21 13:04:35

数据挖掘分析分析方法数据分析师

2017-08-01 16:42:09

数据分析互联网

2016-10-08 22:33:54

相关分析数据

2021-10-29 13:42:44

数据分析数据大数据

2021-07-16 09:55:46

数据工具软件

2019-09-24 14:36:38

数据分析思维大数据

2017-06-19 08:59:06

2019-01-29 15:43:28

数据分析数据挖掘分析方法

2022-10-13 14:07:22

数据分析大数据商业智能

2020-10-27 09:27:46

SQL分析数据

2022-08-26 16:21:47

数据分析工具运营

2017-08-15 18:55:57

大数据数据可视化图表
点赞
收藏

51CTO技术栈公众号