用这8种开源工具,机器学习超轻松

开发 开发工具 机器学习
作为机器学习开发人员,一定需要很多机器学习资源,包括可以在项目中使用的工具等。今天给大家介绍8种开源工具,用于机器学习,希望能帮您提高工作效率。

作为机器学习开发人员,一定需要很多机器学习资源,包括可以在项目中使用的工具等。今天给大家介绍8种开源工具,用于机器学习,希望能帮您提高工作效率。

[[346563]]

1. Gradio

Gradio有用于创建基于Web的UI的工具,让用户能与模型进行实时交互。它包括几个示例项目,比如Inception V3图像分类器的输入接口、MNIST手写识别模型等,帮助了解如何在自己的项目中使用Gradio。

2. Compose

Compose能解决机器学习模型中比较常见的标记原始数据的问题,可以用Python为数据,编写一组标记功能,还能在数据上设置各种变换和阈值,简化标记的过程。

3. Core ML Tools

Core ML Tools是Python包,集成了很多Python机器学习库和工具,TensorFlow,PyTorch,Keras,ONNX,Scikit-learn等模型皆能转换,它的神经网络模型还可以通过训练后量化,而优化大小。

4. GoLearn

GoLearn是针对Google Go语言的机器学习库,它的可定制性更高,能够在应用程序中轻松扩展某些数据结构。此外它能在库中加载和处理数据,并在SciPy和R之后进行了模式化。

5. Cortex

Cortex提供了简便方法,使用Python和TensorFlow,PyTorch,Scikit-learn等模型,提供来自机器学习模型的预测服务。一般Cortex软件包只有几个文件,包括核心Python逻辑,描述要使用的模型,要分配的cortex.yaml文件,及用于安装所需Python要求的require.txt文件。它的计算资源的分配方式与在Kubernetes中差不多,所以能用GPU或Amazon Inferentia ASIC加快服务速度。

6. Oryx

Oryx主要使用Apache Spark和Apache Kafka,在实时数据上运行机器学习模型。版本2.0对该项目进行了重新设计,它的组件以lambda架构松散耦合,能随时添加新算法和算法的新抽象。

7. Featuretools

Featuretools有通过综合数据帧中的数据,而构建的高级Python对象来执行此操作的功能,可以针对从一个或多个数据帧中提取的数据执行操作。它还有综合操作所需的通用原语,使得用户不用自己滚动原语,很方便省心。

8. Shogun

Shogun用C ++编写,可以与Java,Python,C#,Ruby,R,Lua,Octave和Matlab一起使用。最新的主要版本6.0.0增加了对微软Windows和Scala语言的本机支持,它声称比其他库更快、更容易使用,这是它很大的优点。

 

责任编辑:赵宁宁 来源: 今日头条
相关推荐

2020-10-13 14:54:11

机器学习技术工具

2021-07-29 13:06:29

Python机器学习编程语言

2023-03-24 08:22:16

数据迁移工具ETL

2020-09-28 20:44:44

机器学习开源工具编程语言

2020-11-17 16:22:45

开源工具报表

2019-05-17 16:13:25

机器学习SQLFlow蚂蚁金服

2019-05-13 09:22:21

微软开源机器学习

2019-09-23 10:59:31

机器学习算法编程

2019-09-23 11:17:46

机器学习数据技术

2020-06-12 08:19:21

机器学习技术工具

2022-03-17 17:08:05

机器学习算法类型

2020-04-14 17:15:17

CSS工具Web开发

2017-12-30 10:15:15

机器学习工具框架

2021-08-23 11:35:00

工具yyds开源

2020-12-28 08:43:56

机器学习文本注解工具人工智能

2018-10-29 10:24:11

工具Web开发

2019-10-08 10:20:43

开源云安全工具

2019-10-23 08:00:00

Flask机器学习人工智能

2020-07-07 14:15:45

开源机器学习神经网络

2023-10-18 16:02:24

机器学习深度学习ChatGPT
点赞
收藏

51CTO技术栈公众号