Python 疑难问题:[] 与 list() 哪个快?为什么快?快多少呢?

开发 后端
让我们开门见山,直接抛出本文的问题吧:两种创建列表的 [] 与 list() 写法,哪一个更快呢,为什么它会更快呢?

[[346335]]

在日常使用 Python 时,我们经常需要创建一个列表,相信大家都很熟练了吧?

  • 方法一:使用成对的方括号语法
    1. list_a = [] 
  • 方法二:使用内置的 list()
    1. listlist_b = list() 

上面的两种写法,你经常使用哪一个呢?是否思考过它们的区别呢?

让我们开门见山,直接抛出本文的问题吧:两种创建列表的 [] 与 list() 写法,哪一个更快呢,为什么它会更快呢?

注:为了简化问题,我们以创建空列表为例进行分析。关于列表的更多介绍与用法说明,可以查看这篇文章

1. [] 是 list() 的三倍快

对于第一个问题,使用timeit模块的 timeit() 函数就能简单地测算出来:

  1. >>> import timeit 
  2. >>> timeit.timeit('[]', number=10**7) 
  3. >>> timeit.timeit('list()', number=10**7) 

如上图所示,在各自调用一千万次的情况下,[] 创建方式只花费了 0.47 秒,而 list() 创建方式要花费 1.75 秒,所以,后者的耗时是前者的 3.7 倍!

这就回答了刚才的问题:创建空列表时,[] 要比 list() 快不少。

注:timeit() 函数的效率跟运行环境相关,每次执行结果会有微小差异。我在 Python3.8 版本实验了几次,总体上 [] 速度是 list() 的 3 倍多一点。

2. list() 比 [] 执行步骤多

那么,我们继续来分析一下第二个问题:为什么 [] 会更快呢?

这一次我们可以使用dis模块的 dis() 函数,看看两者执行的字节码有何差别:

  1. >>> from dis import dis 
  2. >>> dis("[]") 
  3. >>> dis("list()") 

如上图所示,[] 的字节码有两条指令(BUILD_LIST 与 RETURN_VALUE),而 list() 的字节码有三条指令(LOAD_NAME、CALL_FUNCTION 与 RETURN_VALUE)。

这些指令意味着什么呢?该如何理解呢?

首先,对于 [],它是 Python 中的一组字面量(literal),像数字之类的字面量一样,表示确切的固定值。

也就是说,Python 在解析到它时,就知道它要表示一个列表,因此会直接调用解释器中构建列表的方法(对应BUILD_LIST),来创建列表,所以是一步到位。

而对于 list(),“list”只是一个普通的名称,并不是字面量,也就是说解释器一开始并不认识它。

因此,解释器的第一步是要找到这个名称(对应LOAD_NAME)。它会按照一定的顺序,在各个作用域中逐一查找(局部作用域--全局作用域--内置作用域),直到找到为止,找不到则抛出NameError。

解释器看到“list”之后是一对圆括号,因此第二步是把这个名称当作可调用对象来调用,即把它当成一个函数进行调用(对应 CALL_FUNCTION)。

因此,list() 在创建列表时,需要经过名称查找与函数调用两个步骤,才能真正开始创建列表(注:CALL_FUNCTION 在底层还会有一些函数调用过程,才能走到跟 BUILD_LIST 相通的逻辑,此处我们忽略不计)。

至此,我们就可以回答前面的问题了:因为 list() 涉及的执行步骤更多,因此它比 [] 要慢一些。

3. list() 的速度提升

看完前两个问题的解答过程,你也许觉得还不够过瘾,而且可能觉得就算知道了这个冷知识,也不会有多大的帮助,似乎那微弱的提升显得微不足道。

由于有发散性思考的习惯,我还想到了另外一个挺有意思的问题:list() 的速度能否提升呢?

在刚刚发布的 Python 3.9.0 版本中,它给 list() 实现了更快的 vectorcall 协议,因此执行速度会有一定的提升。

感兴趣的同学可以去 Python 官网下载 3.9 版本。

根据我多轮的测试结果,在新版本中运行 list() 一千万次,耗时大概在 1 秒左右,也就是 [] 运行耗时的 2 倍,相比于前面接近 4 倍的数据,当前版本总体上是提升了不少。

 

责任编辑:赵宁宁 来源: Python猫
相关推荐

2020-02-27 21:03:30

调度器架构效率

2020-02-27 15:44:41

Nginx服务器反向代理

2024-02-26 21:15:20

Kafka缓存参数

2023-06-08 18:25:40

Doris场景查询

2024-03-25 02:00:00

Vite开发

2011-05-06 14:05:22

打印机照片打印

2012-05-04 09:18:46

2020-03-30 15:05:46

Kafka消息数据

2021-06-09 09:32:58

Esbuild 工具前端

2017-04-18 22:50:10

OSPF疑难问题

2009-12-23 08:53:56

Windows 7远程协助

2009-12-25 10:59:08

WPF Timer

2020-10-15 09:19:36

Elasticsear查询速度

2016-12-14 12:02:01

StormHadoop大数据

2017-02-14 14:20:02

StormHadoop

2023-08-29 07:46:08

Redis数据ReHash

2021-05-27 20:56:51

esbuild 工具JavaScript

2024-04-03 09:23:31

ES索引分析器

2021-05-31 07:44:08

Kafka分布式系统

2022-12-15 18:20:46

ClickHouse存储引擎
点赞
收藏

51CTO技术栈公众号