前言
加密解密在实际开发中应用比较广泛,常用加解密分为:“对称式”、“非对称式”和”数字签名“。
对称式:对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。具体算法主要有DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法。
非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。具体算法主要有RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)。
数字签名:数字签名是非对称密钥加密技术与数字摘要技术的应用。主要算法有md5、hmac、sha1等。
以下介绍golang语言主要的加密解密算法实现。
md5
MD5信息摘要算法是一种被广泛使用的密码散列函数,可以产生出一个128位(16进制,32个字符)的散列值(hash value),用于确保信息传输完整一致。
- func GetMd5String(s string) string {
- h := md5.New()
- h.Write([]byte(s))
- return hex.EncodeToString(h.Sum(nil))
- }
hmac
HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code)的缩写,
它通过一个标准算法,在计算哈希的过程中,把key混入计算过程中。
和我们自定义的加salt算法不同,Hmac算法针对所有哈希算法都通用,无论是MD5还是SHA-1。采用Hmac替代我们自己的salt算法,可以使程序算法更标准化,也更安全。
示例
- //key随意设置 data 要加密数据
- func Hmac(key, data string) string {
- hash:= hmac.New(md5.New, []byte(key)) // 创建对应的md5哈希加密算法
- hash.Write([]byte(data))
- return hex.EncodeToString(hash.Sum([]byte("")))
- }
- func HmacSha256(key, data string) string {
- hash:= hmac.New(sha256.New, []byte(key)) //创建对应的sha256哈希加密算法
- hash.Write([]byte(data))
- return hex.EncodeToString(hash.Sum([]byte("")))
- }
sha1
SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。
- func Sha1(data string) string {
- sha1 := sha1.New()
- sha1.Write([]byte(data))
- return hex.EncodeToString(sha1.Sum([]byte("")))
- }
AES
密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES(Data Encryption Standard),已经被多方分析且广为全世界所使用。AES中常见的有三种解决方案,分别为AES-128、AES-192和AES-256。如果采用真正的128位加密技术甚至256位加密技术,蛮力攻击要取得成功需要耗费相当长的时间。
AES 有五种加密模式:
- 电码本模式(Electronic Codebook Book (ECB))、
- 密码分组链接模式(Cipher Block Chaining (CBC))、
- 计算器模式(Counter (CTR))、
- 密码反馈模式(Cipher FeedBack (CFB))
- 输出反馈模式(Output FeedBack (OFB))
ECB模式
出于安全考虑,golang默认并不支持ECB模式。
- package main
- import (
- "crypto/aes"
- "fmt"
- )
- func AESEncrypt(src []byte, key []byte) (encrypted []byte) {
- cipher, _ := aes.NewCipher(generateKey(key))
- length := (len(src) + aes.BlockSize) / aes.BlockSize
- plain := make([]byte, length*aes.BlockSize)
- copy(plain, src)
- pad := byte(len(plain) - len(src))
- for i := len(src); i < len(plain); i++ {
- plain[i] = pad
- }
- encrypted = make([]byte, len(plain))
- // 分组分块加密
- for bs, be := 0, cipher.BlockSize(); bs <= len(src); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() {
- cipher.Encrypt(encrypted[bs:be], plain[bs:be])
- }
- return encrypted
- }
- func AESDecrypt(encrypted []byte, key []byte) (decrypted []byte) {
- cipher, _ := aes.NewCipher(generateKey(key))
- decrypted = make([]byte, len(encrypted))
- //
- for bs, be := 0, cipher.BlockSize(); bs < len(encrypted); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() {
- cipher.Decrypt(decrypted[bs:be], encrypted[bs:be])
- }
- trim := 0
- if len(decrypted) > 0 {
- trim = len(decrypted) - int(decrypted[len(decrypted)-1])
- }
- return decrypted[:trim]
- }
- func generateKey(key []byte) (genKey []byte) {
- genKey = make([]byte, 16)
- copy(genKey, key)
- for i := 16; i < len(key); {
- for j := 0; j < 16 && i < len(key); j, i = j+1, i+1 {
- genKey[j] ^= key[i]
- }
- }
- return genKey
- }
- func main() {
- source:="hello world"
- fmt.Println("原字符:",source)
- //16byte密钥
- key:="1443flfsaWfdas"
- encryptCode:=AESEncrypt([]byte(source),[]byte(key))
- fmt.Println("密文:",string(encryptCode))
- decryptCode:=AESDecrypt(encryptCode,[]byte(key))
- fmt.Println("解密:",string(decryptCode))
- }
CBC模式
- package main
- import(
- "bytes"
- "crypto/aes"
- "fmt"
- "crypto/cipher"
- "encoding/base64"
- )
- func main() {
- orig := "hello world"
- key := "0123456789012345"
- fmt.Println("原文:", orig)
- encryptCode := AesEncrypt(orig, key)
- fmt.Println("密文:" , encryptCode)
- decryptCode := AesDecrypt(encryptCode, key)
- fmt.Println("解密结果:", decryptCode)
- }
- func AesEncrypt(orig string, key string) string {
- // 转成字节数组
- origData := []byte(orig)
- k := []byte(key)
- // 分组秘钥
- // NewCipher该函数限制了输入k的长度必须为16, 24或者32
- block, _ := aes.NewCipher(k)
- // 获取秘钥块的长度
- blockSize := block.BlockSize()
- // 补全码
- origData = PKCS7Padding(origData, blockSize)
- // 加密模式
- blockMode := cipher.NewCBCEncrypter(block, k[:blockSize])
- // 创建数组
- cryted := make([]byte, len(origData))
- // 加密
- blockMode.CryptBlocks(cryted, origData)
- return base64.StdEncoding.EncodeToString(cryted)
- }
- func AesDecrypt(cryted string, key string) string {
- // 转成字节数组
- crytedByte, _ := base64.StdEncoding.DecodeString(cryted)
- k := []byte(key)
- // 分组秘钥
- block, _ := aes.NewCipher(k)
- // 获取秘钥块的长度
- blockSize := block.BlockSize()
- // 加密模式
- blockMode := cipher.NewCBCDecrypter(block, k[:blockSize])
- // 创建数组
- orig := make([]byte, len(crytedByte))
- // 解密
- blockMode.CryptBlocks(orig, crytedByte)
- // 去补全码
- orig = PKCS7UnPadding(orig)
- return string(orig)
- }
- //补码
- //AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。
- func PKCS7Padding(ciphertext []byte, blocksize int) []byte {
- padding := blocksize - len(ciphertext)%blocksize
- padtext := bytes.Repeat([]byte{byte(padding)}, padding)
- return append(ciphertext, padtext...)
- }
- //去码
- func PKCS7UnPadding(origData []byte) []byte {
- length := len(origData)
- unpadding := int(origData[length-1])
- return origData[:(length - unpadding)]
- }
CRT模式
- package main
- import (
- "bytes"
- "crypto/aes"
- "crypto/cipher"
- "fmt"
- )
- //加密
- func aesCtrCrypt(plainText []byte, key []byte) ([]byte, error) {
- //1. 创建cipher.Block接口
- block, err := aes.NewCipher(key)
- if err != nil {
- return nil, err
- }
- //2. 创建分组模式,在crypto/cipher包中
- iv := bytes.Repeat([]byte("1"), block.BlockSize())
- stream := cipher.NewCTR(block, iv)
- //3. 加密
- dst := make([]byte, len(plainText))
- stream.XORKeyStream(dst, plainText)
- return dst, nil
- }
- func main() {
- source:="hello world"
- fmt.Println("原字符:",source)
- key:="1443flfsaWfdasds"
- encryptCode,_:=aesCtrCrypt([]byte(source),[]byte(key))
- fmt.Println("密文:",string(encryptCode))
- decryptCode,_:=aesCtrCrypt(encryptCode,[]byte(key))
- fmt.Println("解密:",string(decryptCode))
- }
- CFB模式
- package main
- import (
- "crypto/aes"
- "crypto/cipher"
- "crypto/rand"
- "encoding/hex"
- "fmt"
- "io"
- )
- func AesEncryptCFB(origData []byte, key []byte) (encrypted []byte) {
- block, err := aes.NewCipher(key)
- if err != nil {
- //panic(err)
- }
- encrypted = make([]byte, aes.BlockSize+len(origData))
- iv := encrypted[:aes.BlockSize]
- if _, err := io.ReadFull(rand.Reader, iv); err != nil {
- //panic(err)
- }
- stream := cipher.NewCFBEncrypter(block, iv)
- stream.XORKeyStream(encrypted[aes.BlockSize:], origData)
- return encrypted
- }
- func AesDecryptCFB(encrypted []byte, key []byte) (decrypted []byte) {
- block, _ := aes.NewCipher(key)
- if len(encrypted) < aes.BlockSize {
- panic("ciphertext too short")
- }
- iv := encrypted[:aes.BlockSize]
- encryptedencrypted = encrypted[aes.BlockSize:]
- stream := cipher.NewCFBDecrypter(block, iv)
- stream.XORKeyStream(encrypted, encrypted)
- return encrypted
- }
- func main() {
- source:="hello world"
- fmt.Println("原字符:",source)
- key:="ABCDEFGHIJKLMNO1"//16位
- encryptCode:=AesEncryptCFB([]byte(source),[]byte(key))
- fmt.Println("密文:",hex.EncodeToString(encryptCode))
- decryptCode:=AesDecryptCFB(encryptCode,[]byte(key))
- fmt.Println("解密:",string(decryptCode))
- }
OFB模式
- package main
- import (
- "bytes"
- "crypto/aes"
- "crypto/cipher"
- "crypto/rand"
- "encoding/hex"
- "fmt"
- "io"
- )
- func aesEncryptOFB( data[]byte,key []byte) ([]byte, error) {
- data = PKCS7Padding(data, aes.BlockSize)
- block, _ := aes.NewCipher([]byte(key))
- out := make([]byte, aes.BlockSize + len(data))
- iv := out[:aes.BlockSize]
- if _, err := io.ReadFull(rand.Reader, iv); err != nil {
- return nil, err
- }
- stream := cipher.NewOFB(block, iv)
- stream.XORKeyStream(out[aes.BlockSize:], data)
- return out, nil
- }
- func aesDecryptOFB( data[]byte,key []byte) ([]byte, error) {
- block, _ := aes.NewCipher([]byte(key))
- iv := data[:aes.BlockSize]
- datadata = data[aes.BlockSize:]
- if len(data) % aes.BlockSize != 0 {
- return nil, fmt.Errorf("data is not a multiple of the block size")
- }
- out := make([]byte, len(data))
- mode := cipher.NewOFB(block, iv)
- mode.XORKeyStream(out, data)
- out= PKCS7UnPadding(out)
- return out, nil
- }
- //补码
- //AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。
- func PKCS7Padding(ciphertext []byte, blocksize int) []byte {
- padding := blocksize - len(ciphertext)%blocksize
- padtext := bytes.Repeat([]byte{byte(padding)}, padding)
- return append(ciphertext, padtext...)
- }
- //去码
- func PKCS7UnPadding(origData []byte) []byte {
- length := len(origData)
- unpadding := int(origData[length-1])
- return origData[:(length - unpadding)]
- }
- func main() {
- source:="hello world"
- fmt.Println("原字符:",source)
- key:="1111111111111111"//16位 32位均可
- encryptCode,_:=aesEncryptOFB([]byte(source),[]byte(key))
- fmt.Println("密文:",hex.EncodeToString(encryptCode))
- decryptCode,_:=aesDecryptOFB(encryptCode,[]byte(key))
- fmt.Println("解密:",string(decryptCode))
- }
RSA加密
首先使用openssl生成公私钥
- package main
- import (
- "crypto/rand"
- "crypto/rsa"
- "crypto/x509"
- "encoding/base64"
- "encoding/pem"
- "errors"
- "fmt"
- )
- // 私钥生成
- //openssl genrsa -out rsa_private_key.pem 1024
- var privateKey = []byte(`
- -----BEGIN RSA PRIVATE KEY-----
- MIICWwIBAAKBgQDcGsUIIAINHfRTdMmgGwLrjzfMNSrtgIf4EGsNaYwmC1GjF/bM
- h0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdTnCDPPZ7oV7p1B9Pud+6zPaco
- qDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Zy682X1+R1lRK8D+vmQIDAQAB
- AoGAeWAZvz1HZExca5k/hpbeqV+0+VtobMgwMs96+U53BpO/VRzl8Cu3CpNyb7HY
- 64L9YQ+J5QgpPhqkgIO0dMu/0RIXsmhvr2gcxmKObcqT3JQ6S4rjHTln49I2sYTz
- 7JEH4TcplKjSjHyq5MhHfA+CV2/AB2BO6G8limu7SheXuvECQQDwOpZrZDeTOOBk
- z1vercawd+J9ll/FZYttnrWYTI1sSF1sNfZ7dUXPyYPQFZ0LQ1bhZGmWBZ6a6wd9
- R+PKlmJvAkEA6o32c/WEXxW2zeh18sOO4wqUiBYq3L3hFObhcsUAY8jfykQefW8q
- yPuuL02jLIajFWd0itjvIrzWnVmoUuXydwJAXGLrvllIVkIlah+lATprkypH3Gyc
- YFnxCTNkOzIVoXMjGp6WMFylgIfLPZdSUiaPnxby1FNM7987fh7Lp/m12QJAK9iL
- 2JNtwkSR3p305oOuAz0oFORn8MnB+KFMRaMT9pNHWk0vke0lB1sc7ZTKyvkEJW0o
- eQgic9DvIYzwDUcU8wJAIkKROzuzLi9AvLnLUrSdI6998lmeYO9x7pwZPukz3era
- zncjRK3pbVkv0KrKfczuJiRlZ7dUzVO0b6QJr8TRAA==
- -----END RSA PRIVATE KEY-----
- `)
- // 公钥: 根据私钥生成
- //openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem
- var publicKey = []byte(`
- -----BEGIN PUBLIC KEY-----
- MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDcGsUIIAINHfRTdMmgGwLrjzfM
- NSrtgIf4EGsNaYwmC1GjF/bMh0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdT
- nCDPPZ7oV7p1B9Pud+6zPacoqDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Z
- y682X1+R1lRK8D+vmQIDAQAB
- -----END PUBLIC KEY-----
- `)
- // 加密
- func RsaEncrypt(origData []byte) ([]byte, error) {
- //解密pem格式的公钥
- block, _ := pem.Decode(publicKey)
- if block == nil {
- return nil, errors.New("public key error")
- }
- // 解析公钥
- pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
- if err != nil {
- return nil, err
- }
- // 类型断言
- pub := pubInterface.(*rsa.PublicKey)
- //加密
- return rsa.EncryptPKCS1v15(rand.Reader, pub, origData)
- }
- // 解密
- func RsaDecrypt(ciphertext []byte) ([]byte, error) {
- //解密
- block, _ := pem.Decode(privateKey)
- if block == nil {
- return nil, errors.New("private key error!")
- }
- //解析PKCS1格式的私钥
- priv, err := x509.ParsePKCS1PrivateKey(block.Bytes)
- if err != nil {
- return nil, err
- }
- // 解密
- return rsa.DecryptPKCS1v15(rand.Reader, priv, ciphertext)
- }
- func main() {
- data, _ := RsaEncrypt([]byte("hello world"))
- fmt.Println(base64.StdEncoding.EncodeToString(data))
- origData, _ := RsaDecrypt(data)
- fmt.Println(string(origData))
- }