Redis可以看成NoSQL类型的数据库系统, Redis也提供了事务, 但是和传统的关系型数据库的事务既有相似性, 也存在区别.因为Redis的架构基于操作系统的多路复用的IO接口,主处理流程是一个单线程,因此对于一个完整的命令, 其处理都是原子性的, 但是如果需要将多个命令作为一个不可分割的处理序列, 就需要使用事务.
Redis事务有如下一些特点:
- 事务中的命令序列执行的时候是原子性的,也就是说,其不会被其他客户端的命令中断. 这和传统的数据库的事务的属性是类似的.
- 尽管Redis事务中的命令序列是原子执行的, 但是事务中的命令序列执行可以部分成功,这种情况下,Redis事务不会执行回滚操作. 这和传统关系型数据库的事务是有区别的.
- 尽管Redis有RDB和AOF两种数据持久化机制, 但是其设计目标是高效率的cache系统. Redis事务只保证将其命令序列中的操作结果提交到内存中,不保证持久化到磁盘文件. 更进一步的, Redis事务和RDB持久化机制没有任何关系, 因为RDB机制是对内存数据结构的全量的快照.由于AOF机制是一种增量持久化,所以事务中的命令序列会提交到AOF的缓存中.但是AOF机制将其缓存写入磁盘文件是由其配置的实现策略决定的,和Redis事务没有关系.
Redis事务API
从宏观上来讲, Redis事务开始后, 会缓存后续的操作命令及其操作数据,当事务提交时,原子性的执行缓存的命令序列.
从版本2.2开始,Redis提供了一种乐观的锁机制, 配合这种机制,Redis事务提交时, 变成了事务的条件执行. 具体的说,如果乐观锁失败了,事务提交时, 丢弃事务中的命令序列,如果乐观锁成功了, 事务提交时,才会执行其命令序列.当然,也可以不使用乐观锁机制, 在事务提交时, 无条件执行事务的命令序列.
Redis事务涉及到MULTI, EXEC, DISCARD, WATCH和UNWATCH这五个命令:
- 事务开始的命令是MULTI, 该命令返回OK提示信息. Redis不支持事务嵌套,执行多次MULTI命令和执行一次是相同的效果.嵌套执行MULTI命令时,Redis只是返回错误提示信息.
- EXEC是事务的提交命令,事务中的命令序列将被执行(或者不被执行,比如乐观锁失败等).该命令将返回响应数组,其内容对应事务中的命令执行结果.
- WATCH命令是开始执行乐观锁,该命令的参数是key(可以有多个), Redis将执行WATCH命令的客户端对象和key进行关联,如果其他客户端修改了这些key,则执行WATCH命令的客户端将被设置乐观锁失败的标志.该命令必须在事务开始前执行,即在执行MULTI命令前执行WATCH命令,否则执行无效,并返回错误提示信息.
- UNWATCH命令将取消当前客户端对象的乐观锁key,该客户端对象的事务提交将变成无条件执行.
- DISCARD命令将结束事务,并且会丢弃全部的命令序列.
需要注意的是,EXEC命令和DISCARD命令结束事务时,会调用UNWATCH命令,取消该客户端对象上所有的乐观锁key.
无条件提交
如果不使用乐观锁, 则事务为无条件提交.下面是一个事务执行的例子:
- multi
- +OK
- incr key1
- +QUEUED
- set key2 val2
- +QUEUED
- exec
- *2
- :1
- +OK
当客户端开始事务后, 后续发送的命令将被Redis缓存起来,Redis向客户端返回响应提示字符串QUEUED.当执行EXEC提交事务时,缓存的命令依次被执行,返回命令序列的执行结果.
事务的错误处理
事务提交命令EXEC有可能会失败, 有三种类型的失败场景:
- 在事务提交之前,客户端执行的命令缓存失败.比如命令的语法错误(命令参数个数错误, 不支持的命令等等).如果发生这种类型的错误,Redis将向客户端返回包含错误提示信息的响应.
- 事务提交时,之前缓存的命令有可能执行失败.
- 由于乐观锁失败,事务提交时,将丢弃之前缓存的所有命令序列.
当发生第一种失败的情况下,客户端在执行事务提交命令EXEC时,将丢弃事务中所有的命令序列.下面是一个例子:
- multi
- +OK
- incr num1 num2
- -ERR wrong number of arguments for 'incr' command
- set key1 val1
- +QUEUED
- exec
- -EXECABORT Transaction discarded because of previous errors.
命令incr num1 num2并没有缓存成功, 因为incr命令只允许有一个参数,是个语法错误的命令.Redis无法成功缓存该命令,向客户端发送错误提示响应.接下来的set key1 val1命令缓存成功.最后执行事务提交的时候,因为发生过命令缓存失败,所以事务中的所有命令序列被丢弃.
如果事务中的所有命令序列都缓存成功,在提交事务的时候,缓存的命令中仍可能执行失败.但Redis不会对事务做任何回滚补救操作.下面是一个这样的例子:
- multi
- +OK
- set key1 val1
- +QUEUED
- lpop key1
- +QUEUED
- incr num1
- +QUEUED
- exec
- *3
- +OK
- -WRONGTYPE Operation against a key holding the wrong kind of value
- :1
所有的命令序列都缓存成功,但是在提交事务的时候,命令set key1 val1和incr num1执行成功了,Redis保存了其执行结果,但是命令lpop key1执行失败了.
乐观锁机制
Redis事务和乐观锁一起使用时,事务将成为有条件提交.
关于乐观锁,需要注意的是:
- WATCH命令必须在MULTI命令之前执行. WATCH命令可以执行多次.
- WATCH命令可以指定乐观锁的多个key,如果在事务过程中,任何一个key被其他客户端改变,则当前客户端的乐观锁失败,事务提交时,将丢弃所有命令序列.
- 多个客户端的WATCH命令可以指定相同的key.
WATCH命令指定乐观锁后,可以接着执行MULTI命令进入事务上下文,也可以在WATCH命令和MULTI命令之间执行其他命令. 具体使用方式取决于场景需求,不在事务中的命令将立即被执行.
如果WATCH命令指定的乐观锁的key,被当前客户端改变,在事务提交时,乐观锁不会失败.
如果WATCH命令指定的乐观锁的key具有超时属性,并且该key在WATCH命令执行后, 在事务提交命令EXEC执行前超时, 则乐观锁不会失败.如果该key被其他客户端对象修改,则乐观锁失败.
一个执行乐观锁机制的事务例子:
- rpush list v1 v2 v3
- :3
- watch list
- +OK
- multi
- +OK
- lpop list
- +QUEUED
- exec
- *1
- $2
- v1
下面是另一个例子,乐观锁被当前客户端改变, 事务提交成功:
- watch num
- +OK
- multi
- +OK
- incr num
- +QUEUED
- exec
- *1
- :2
Redis事务和乐观锁配合使用时, 可以构造实现单个Redis命令不能完成的更复杂的逻辑.
Redis事务的源码实现机制
首先,事务开始的MULTI命令执行的函数为multiCommand, 其实现为(multi.c):
- void multiCommand(redisClient *c) {
- if (c->flags & REDIS_MULTI) {
- addReplyError(c,"MULTI calls can not be nested");
- return;
- }
- c->flags |= REDIS_MULTI;
- addReply(c,shared.ok);
- }
该命令只是在当前客户端对象上加上REDIS_MULTI标志, 表示该客户端进入了事务上下文.
客户端进入事务上下文后,后续执行的命令将被缓存. 函数processCommand是Redis处理客户端命令的入口函数, 其实现为(redis.c):
- int processCommand(redisClient *c) {
- /* The QUIT command is handled separately. Normal command procs will
- * go through checking for replication and QUIT will cause trouble
- * when FORCE_REPLICATION is enabled and would be implemented in
- * a regular command proc. */
- if (!strcasecmp(c->argv[0]->ptr,"quit")) {
- addReply(c,shared.ok);
- c->flags |= REDIS_CLOSE_AFTER_REPLY;
- return REDIS_ERR;
- }
- /* Now lookup the command and check ASAP about trivial error conditions
- * such as wrong arity, bad command name and so forth. */
- c->ccmd = c->lastcmd = lookupCommand(c->argv[0]->ptr);
- if (!c->cmd) {
- flagTransaction(c);
- addReplyErrorFormat(c,"unknown command '%s'",
- (char*)c->argv[0]->ptr);
- return REDIS_OK;
- } else if ((c->cmd->arity > 0 && c->cmd->arity != c->argc) ||
- (c->argc < -c->cmd->arity)) {
- flagTransaction(c);
- addReplyErrorFormat(c,"wrong number of arguments for '%s' command",
- c->cmd->name);
- return REDIS_OK;
- }
- /* Check if the user is authenticated */
- if (server.requirepass && !c->authenticated && c->cmd->proc != authCommand)
- {
- flagTransaction(c);
- addReply(c,shared.noautherr);
- return REDIS_OK;
- }
- /* Handle the maxmemory directive.
- *
- * First we try to free some memory if possible (if there are volatile
- * keys in the dataset). If there are not the only thing we can do
- * is returning an error. */
- if (server.maxmemory) {
- int retval = freeMemoryIfNeeded();
- /* freeMemoryIfNeeded may flush slave output buffers. This may result
- * into a slave, that may be the active client, to be freed. */
- if (server.current_client == NULL) return REDIS_ERR;
- /* It was impossible to free enough memory, and the command the client
- * is trying to execute is denied during OOM conditions? Error. */
- if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) {
- flagTransaction(c);
- addReply(c, shared.oomerr);
- return REDIS_OK;
- }
- }
- /* Don't accept write commands if there are problems persisting on disk
- * and if this is a master instance. */
- if (((server.stop_writes_on_bgsave_err &&
- server.saveparamslen > 0 &&
- server.lastbgsave_status == REDIS_ERR) ||
- server.aof_last_write_status == REDIS_ERR) &&
- server.masterhost == NULL &&
- (c->cmd->flags & REDIS_CMD_WRITE ||
- c->cmd->proc == pingCommand))
- {
- flagTransaction(c);
- if (server.aof_last_write_status == REDIS_OK)
- addReply(c, shared.bgsaveerr);
- else
- addReplySds(c,
- sdscatprintf(sdsempty(),
- "-MISCONF Errors writing to the AOF file: %s\r\n",
- strerror(server.aof_last_write_errno)));
- return REDIS_OK;
- }
- /* Don't accept write commands if there are not enough good slaves and
- * user configured the min-slaves-to-write option. */
- if (server.masterhost == NULL &&
- server.repl_min_slaves_to_write &&
- server.repl_min_slaves_max_lag &&
- c->cmd->flags & REDIS_CMD_WRITE &&
- server.repl_good_slaves_count < server.repl_min_slaves_to_write)
- {
- flagTransaction(c);
- addReply(c, shared.noreplicaserr);
- return REDIS_OK;
- }
- /* Don't accept write commands if this is a read only slave. But
- * accept write commands if this is our master. */
- if (server.masterhost && server.repl_slave_ro &&
- !(c->flags & REDIS_MASTER) &&
- c->cmd->flags & REDIS_CMD_WRITE)
- {
- addReply(c, shared.roslaveerr);
- return REDIS_OK;
- }
- /* Only allow SUBSCRIBE and UNSUBSCRIBE in the context of Pub/Sub */
- if (c->flags & REDIS_PUBSUB &&
- c->cmd->proc != pingCommand &&
- c->cmd->proc != subscribeCommand &&
- c->cmd->proc != unsubscribeCommand &&
- c->cmd->proc != psubscribeCommand &&
- c->cmd->proc != punsubscribeCommand) {
- addReplyError(c,"only (P)SUBSCRIBE / (P)UNSUBSCRIBE / QUIT allowed in this context");
- return REDIS_OK;
- }
- /* Only allow INFO and SLAVEOF when slave-serve-stale-data is no and
- * we are a slave with a broken link with master. */
- if (server.masterhost && server.repl_state != REDIS_REPL_CONNECTED &&
- server.repl_serve_stale_data == 0 &&
- !(c->cmd->flags & REDIS_CMD_STALE))
- {
- flagTransaction(c);
- addReply(c, shared.masterdownerr);
- return REDIS_OK;
- }
- /* Loading DB? Return an error if the command has not the
- * REDIS_CMD_LOADING flag. */
- if (server.loading && !(c->cmd->flags & REDIS_CMD_LOADING)) {
- addReply(c, shared.loadingerr);
- return REDIS_OK;
- }
- /* Lua script too slow? Only allow a limited number of commands. */
- if (server.lua_timedout &&
- c->cmd->proc != authCommand &&
- c->cmd->proc != replconfCommand &&
- !(c->cmd->proc == shutdownCommand &&
- c->argc == 2 &&
- tolower(((char*)c->argv[1]->ptr)[0]) == 'n') &&
- !(c->cmd->proc == scriptCommand &&
- c->argc == 2 &&
- tolower(((char*)c->argv[1]->ptr)[0]) == 'k'))
- {
- flagTransaction(c);
- addReply(c, shared.slowscripterr);
- return REDIS_OK;
- }
- /* Exec the command */
- if (c->flags & REDIS_MULTI &&
- c->cmd->proc != execCommand && c->cmd->proc != discardCommand &&
- c->cmd->proc != multiCommand && c->cmd->proc != watchCommand)
- {
- queueMultiCommand(c);
- addReply(c,shared.queued);
- } else {
- call(c,REDIS_CALL_FULL);
- if (listLength(server.ready_keys))
- handleClientsBlockedOnLists();
- }
- return REDIS_OK;
- }
Line145:151当客户端处于事务上下文时, 如果接收的是非事务命令(MULTI, EXEC, WATCH, DISCARD), 则调用queueMultiCommand将命令缓存起来,然后向客户端发送成功响应.
在函数processCommand中, 在缓存命令之前, 如果检查到客户端发送的命令不存在,或者命令参数个数不正确等情况, 会调用函数flagTransaction标命令缓存失败.也就是说,函数processCommand中, 所有调用函数flagTransaction的条件分支,都是返回失败响应.
缓存命令的函数queueMultiCommand的实现为(multi.c):
- /* Add a new command into the MULTI commands queue */
- void queueMultiCommand(redisClient *c) {
- multiCmd *mc;
- int j;
- c->mstate.commands = zrealloc(c->mstate.commands,
- sizeof(multiCmd)*(c->mstate.count+1));
- mc = c->mstate.commands+c->mstate.count;
- mc->ccmd = c->cmd;
- mc->argc = c->argc;
- mc->argv = zmalloc(sizeof(robj*)*c->argc);
- memcpy(mc->argv,c->argv,sizeof(robj*)*c->argc);
- for (j = 0; j < c->argc; j++)
- incrRefCount(mc->argv[j]);
- c->mstate.count++;
- }
在事务上下文中, 使用multiCmd结构来缓存命令, 该结构定义为(redis.h):
- /* Client MULTI/EXEC state */
- typedef struct multiCmd {
- robj **argv;
- int argc;
- struct redisCommand *cmd;
- } multiCmd;
其中argv字段指向命令的参数内存地址,argc为命令参数个数, cmd为命令描述结构, 包括名字和函数指针等.
命令参数的内存空间已经使用动态分配记录于客户端对象的argv字段了, multiCmd结构的argv字段指向客户端对象redisClient的argv即可.
无法缓存命令时, 调用函数flagTransaction,该函数的实现为(multi.c):
- /* Flag the transacation as DIRTY_EXEC so that EXEC will fail.
- * Should be called every time there is an error while queueing a command. */
- void flagTransaction(redisClient *c) {
- if (c->flags & REDIS_MULTI)
- c->flags |= REDIS_DIRTY_EXEC;
- }
该函数在客户端对象中设置REDIS_DIRTY_EXEC标志, 如果设置了这个标志, 事务提交时, 命令序列将被丢弃.
最后,在事务提交时, 函数processCommand中将调用call(c,REDIS_CALL_FULL);, 其实现为(redis.c):
- /* Call() is the core of Redis execution of a command */
- void call(redisClient *c, int flags) {
- long long dirty, start, duration;
- int cclient_old_flags = c->flags;
- /* Sent the command to clients in MONITOR mode, only if the commands are
- * not generated from reading an AOF. */
- if (listLength(server.monitors) &&
- !server.loading &&
- !(c->cmd->flags & (REDIS_CMD_SKIP_MONITOR|REDIS_CMD_ADMIN)))
- {
- replicationFeedMonitors(c,server.monitors,c->db->id,c->argv,c->argc);
- }
- /* Call the command. */
- c->flags &= ~(REDIS_FORCE_AOF|REDIS_FORCE_REPL);
- redisOpArrayInit(&server.also_propagate);
- dirty = server.dirty;
- start = ustime();
- c->cmd->proc(c);
- duration = ustime()-start;
- dirty = server.dirty-dirty;
- if (dirty < 0) dirty = 0;
- /* When EVAL is called loading the AOF we don't want commands called
- * from Lua to go into the slowlog or to populate statistics. */
- if (server.loading && c->flags & REDIS_LUA_CLIENT)
- flags &= ~(REDIS_CALL_SLOWLOG | REDIS_CALL_STATS);
- /* If the caller is Lua, we want to force the EVAL caller to propagate
- * the script if the command flag or client flag are forcing the
- * propagation. */
- if (c->flags & REDIS_LUA_CLIENT && server.lua_caller) {
- if (c->flags & REDIS_FORCE_REPL)
- server.lua_caller->flags |= REDIS_FORCE_REPL;
- if (c->flags & REDIS_FORCE_AOF)
- server.lua_caller->flags |= REDIS_FORCE_AOF;
- }
- /* Log the command into the Slow log if needed, and populate the
- * per-command statistics that we show in INFO commandstats. */
- if (flags & REDIS_CALL_SLOWLOG && c->cmd->proc != execCommand) {
- char *latency_event = (c->cmd->flags & REDIS_CMD_FAST) ?
- "fast-command" : "command";
- latencyAddSampleIfNeeded(latency_event,duration/1000);
- slowlogPushEntryIfNeeded(c->argv,c->argc,duration);
- }
- if (flags & REDIS_CALL_STATS) {
- c->cmd->microseconds += duration;
- c->cmd->calls++;
- }
- /* Propagate the command into the AOF and replication link */
- if (flags & REDIS_CALL_PROPAGATE) {
- int flags = REDIS_PROPAGATE_NONE;
- if (c->flags & REDIS_FORCE_REPL) flags |= REDIS_PROPAGATE_REPL;
- if (c->flags & REDIS_FORCE_AOF) flags |= REDIS_PROPAGATE_AOF;
- if (dirty)
- flags |= (REDIS_PROPAGATE_REPL | REDIS_PROPAGATE_AOF);
- if (flags != REDIS_PROPAGATE_NONE)
- propagate(c->cmd,c->db->id,c->argv,c->argc,flags);
- }
- /* Restore the old FORCE_AOF/REPL flags, since call can be executed
- * recursively. */
- c->flags &= ~(REDIS_FORCE_AOF|REDIS_FORCE_REPL);
- c->flags |= client_old_flags & (REDIS_FORCE_AOF|REDIS_FORCE_REPL);
- /* Handle the alsoPropagate() API to handle commands that want to propagate
- * multiple separated commands. */
- if (server.also_propagate.numops) {
- int j;
- redisOp *rop;
- for (j = 0; j < server.also_propagate.numops; j++) {
- rop = &server.also_propagate.ops[j];
- propagate(rop->cmd, rop->dbid, rop->argv, rop->argc, rop->target);
- }
- redisOpArrayFree(&server.also_propagate);
- }
- server.stat_numcommands++;
- }
在函数call中通过执行c->cmd->proc(c);调用具体的命令函数.事务提交命令EXEC对应的执行函数为execCommand, 其实现为(multi.c):
- void execCommand(redisClient *c) {
- int j;
- robj **orig_argv;
- int orig_argc;
- struct redisCommand *orig_cmd;
- int must_propagate = 0; /* Need to propagate MULTI/EXEC to AOF / slaves? */
- if (!(c->flags & REDIS_MULTI)) {
- addReplyError(c,"EXEC without MULTI");
- return;
- }
- /* Check if we need to abort the EXEC because:
- * 1) Some WATCHed key was touched.
- * 2) There was a previous error while queueing commands.
- * A failed EXEC in the first case returns a multi bulk nil object
- * (technically it is not an error but a special behavior), while
- * in the second an EXECABORT error is returned. */
- if (c->flags & (REDIS_DIRTY_CAS|REDIS_DIRTY_EXEC)) {
- addReply(c, c->flags & REDIS_DIRTY_EXEC ? shared.execaborterr :
- shared.nullmultibulk);
- discardTransaction(c);
- goto handle_monitor;
- }
- /* Exec all the queued commands */
- unwatchAllKeys(c); /* Unwatch ASAP otherwise we'll waste CPU cycles */
- orig_argv = c->argv;
- orig_argc = c->argc;
- orig_cmd = c->cmd;
- addReplyMultiBulkLen(c,c->mstate.count);
- for (j = 0; j < c->mstate.count; j++) {
- c->argc = c->mstate.commands[j].argc;
- c->argv = c->mstate.commands[j].argv;
- c->ccmd = c->mstate.commands[j].cmd;
- /* Propagate a MULTI request once we encounter the first write op.
- * This way we'll deliver the MULTI/..../EXEC block as a whole and
- * both the AOF and the replication link will have the same consistency
- * and atomicity guarantees. */
- if (!must_propagate && !(c->cmd->flags & REDIS_CMD_READONLY)) {
- execCommandPropagateMulti(c);
- must_propagate = 1;
- }
- call(c,REDIS_CALL_FULL);
- /* Commands may alter argc/argv, restore mstate. */
- c->mstate.commands[j].argc = c->argc;
- c->mstate.commands[j].argv = c->argv;
- c->mstate.commands[j].cmd = c->cmd;
- }
- c->argv = orig_argv;
- c->argc = orig_argc;
- c->cmd = orig_cmd;
- discardTransaction(c);
- /* Make sure the EXEC command will be propagated as well if MULTI
- * was already propagated. */
- if (must_propagate) server.dirty++;
- handle_monitor:
- /* Send EXEC to clients waiting data from MONITOR. We do it here
- * since the natural order of commands execution is actually:
- * MUTLI, EXEC, ... commands inside transaction ...
- * Instead EXEC is flagged as REDIS_CMD_SKIP_MONITOR in the command
- * table, and we do it here with correct ordering. */
- if (listLength(server.monitors) && !server.loading)
- replicationFeedMonitors(c,server.monitors,c->db->id,c->argv,c->argc);
- }
LINE8:11检查EXEC命令和MULTI命令是否配对使用, 单独执行EXEC命令是没有意义的.
LINE19:24检查客户端对象是否具有REDIS_DIRTY_CAS或者REDIS_DIRTY_EXEC标志, 如果存在,则调用函数discardTransaction丢弃命令序列, 向客户端返回失败响应.
如果没有检查到任何错误,则先执行unwatchAllKeys(c);取消该客户端上所有的乐观锁key.
LINE32:52依次执行缓存的命令序列,这里有两点需要注意的是:
事务可能需要同步到AOF缓存或者replica备份节点中.如果事务中的命令序列都是读操作, 则没有必要向AOF和replica进行同步.如果事务的命令序列中包含写命令,则MULTI, EXEC和相关的写命令会向AOF和replica进行同步.根据LINE41:44的条件判断,执行execCommandPropagateMulti(c);保证MULTI命令同步, LINE59检查EXEC命令是否需要同步, 即MULTI命令和EXEC命令必须保证配对同步.EXEC命令的同步执行在函数的call中LINE62propagate(c->cmd,c->db->id,c->argv,c->argc,flags);, 具体的写入命令由各自的执行函数负责同步.
这里执行命令序列时, 通过执行call(c,REDIS_CALL_FULL);所以call函数是递归调用.
所以,综上所述, Redis事务其本质就是,以不可中断的方式依次执行缓存的命令序列,将结果保存到内存cache中.
事务提交时, 丢弃命令序列会调用函数discardTransaction, 其实现为(multi.c):
- void discardTransaction(redisClient *c) {
- freeClientMultiState(c);
- initClientMultiState(c);
- c->flags &= ~(REDIS_MULTI|REDIS_DIRTY_CAS|REDIS_DIRTY_EXEC);
- unwatchAllKeys(c);
- }
该函数调用freeClientMultiState释放multiCmd对象内存.调用initClientMultiState复位客户端对象的缓存命令管理结构.调用unwatchAllKeys取消该客户端的乐观锁.
WATCH命令执行乐观锁, 其对应的执行函数为watchCommand, 其实现为(multi.c):
- void watchCommand(redisClient *c) {
- int j;
- if (c->flags & REDIS_MULTI) {
- addReplyError(c,"WATCH inside MULTI is not allowed");
- return;
- }
- for (j = 1; j < c->argc; j++)
- watchForKey(c,c->argv[j]);
- addReply(c,shared.ok);
- }
进而调用函数watchForKey, 其实现为(multi.c):
- /* Watch for the specified key */
- void watchForKey(redisClient *c, robj *key) {
- list *clients = NULL;
- listIter li;
- listNode *ln;
- watchedKey *wk;
- /* Check if we are already watching for this key */
- listRewind(c->watched_keys,&li);
- while((ln = listNext(&li))) {
- wk = listNodeValue(ln);
- if (wk->db == c->db && equalStringObjects(key,wk->key))
- return; /* Key already watched */
- }
- /* This key is not already watched in this DB. Let's add it */
- clients = dictFetchValue(c->db->watched_keys,key);
- if (!clients) {
- clients = listCreate();
- dictAdd(c->db->watched_keys,key,clients);
- incrRefCount(key);
- }
- listAddNodeTail(clients,c);
- /* Add the new key to the list of keys watched by this client */
- wk = zmalloc(sizeof(*wk));
- wk->keykey = key;
- wk->db = c->db;
- incrRefCount(key);
- listAddNodeTail(c->watched_keys,wk);
- }
关于乐观锁的key, 既保存于其客户端对象的watched_keys链表中, 也保存于全局数据库对象的watched_keys哈希表中.
LINE10:14检查客户端对象的链表中是否已经存在该key, 如果已经存在, 则直接返回.LINE16在全局数据库中返回该key对应的客户端对象链表, 如果链表不存在, 说明其他客户端没有使用该key作为乐观锁, 如果链表存在, 说明其他客户端已经使用该key作为乐观锁. LINE22将当前客户端对象记录于该key对应的链表中. LINE28将该key记录于当前客户端的key链表中.
当前客户端执行乐观锁以后, 其他客户端的写入命令可能修改该key值.所有具有写操作属性的命令都会执行函数signalModifiedKey, 其实现为(db.c):
- void signalModifiedKey(redisDb *db, robj *key) {
- touchWatchedKey(db,key);
- }
函数touchWatchedKey的实现为(multi.c):
- /* "Touch" a key, so that if this key is being WATCHed by some client the
- * next EXEC will fail. */
- void touchWatchedKey(redisDb *db, robj *key) {
- list *clients;
- listIter li;
- listNode *ln;
- if (dictSize(db->watched_keys) == 0) return;
- clients = dictFetchValue(db->watched_keys, key);
- if (!clients) return;
- /* Mark all the clients watching this key as REDIS_DIRTY_CAS */
- /* Check if we are already watching for this key */
- listRewind(clients,&li);
- while((ln = listNext(&li))) {
- redisClient *c = listNodeValue(ln);
- c->flags |= REDIS_DIRTY_CAS;
- }
- }
语句if (dictSize(db->watched_keys) == 0) return;检查全局数据库中的哈希表watched_keys是否为空, 如果为空,说明没有任何客户端执行WATCH命令, 直接返回.如果该哈希表不为空, 取回该key对应的客户端链表结构,并把该链表中的每个客户端对象设置REDIS_DIRTY_CAS标志. 前面在EXEC的执行命令中,进行过条件判断, 如果客户端对象具有这个标志, 则丢弃事务中的命令序列.
在执行EXEC, DISCARD, UNWATCH命令以及在客户端结束连接的时候,都会取消乐观锁, 最终都会执行函数unwatchAllKeys, 其实现为(multi.c):
- /* Unwatch all the keys watched by this client. To clean the EXEC dirty
- * flag is up to the caller. */
- void unwatchAllKeys(redisClient *c) {
- listIter li;
- listNode *ln;
- if (listLength(c->watched_keys) == 0) return;
- listRewind(c->watched_keys,&li);
- while((ln = listNext(&li))) {
- list *clients;
- watchedKey *wk;
- /* Lookup the watched key -> clients list and remove the client
- * from the list */
- wk = listNodeValue(ln);
- clients = dictFetchValue(wk->db->watched_keys, wk->key);
- redisAssertWithInfo(c,NULL,clients != NULL);
- listDelNode(clients,listSearchKey(clients,c));
- /* Kill the entry at all if this was the only client */
- if (listLength(clients) == 0)
- dictDelete(wk->db->watched_keys, wk->key);
- /* Remove this watched key from the client->watched list */
- listDelNode(c->watched_keys,ln);
- decrRefCount(wk->key);
- zfree(wk);
- }
- }
语句if (listLength(c->watched_keys) == 0) return;判断如果当前客户端对象的watched_keys链表为空,说明当前客户端没有执行WATCH命令,直接返回.如果该链表非空, 则依次遍历该链表中的key, 并从该链表中删除key, 同时,获得全局数据库中的哈希表watched_keys中该key对应的客户端链表, 删除当前客户端对象.