在 MySQL 中设计表的时候,MySQL 官方推荐不要使用 uuid 或者不连续不重复的雪花 id(long 形且唯一,单机递增),而是推荐连续自增的主键 id,官方的推荐是 auto_increment。
那么为什么不建议采用 uuid,使用 uuid 究竟有什么坏处?本问我们从以下几个部分来分析这个问题,探讨一下内部的原因:
- MySQL 程序实例
- 使用 uuid 和自增 id 的索引结构对比
- 总结
MySQL 程序实例
要说明这个问题,我们首先来建立三张表,分别是:
- user_auto_key
- user_uuid
- user_random_key
他们分别表示自动增长的主键,uuid 作为主键,随机 key 作为主键,其他我们完全保持不变。
根据控制变量法,我们只把每个表的主键使用不同的策略生成,而其他的字段完全一样,然后测试一下表的插入速度和查询速度。
注:这里的随机 key 其实是指用雪花算法算出来的前后不连续不重复无规律的id:一串 18 位长度的 long 值。
id 自动生成表:
用户 uuid 表:
随机主键表:
光有理论不行,直接上程序,使用 Spring 的 jdbcTemplate 来实现增查测试。
技术框架:Spring Boot+jdbcTemplate+junit+hutool,程序的原理就是连接自己的测试数据库,然后在相同的环境下写入同等数量的数据,来分析一下 insert 插入的时间来进行综合其效率。
为了做到最真实的效果,所有的数据采用随机生成,比如名字、邮箱、地址都是随机生成:
- package com.wyq.mysqldemo;
- import cn.hutool.core.collection.CollectionUtil;
- import com.wyq.mysqldemo.databaseobject.UserKeyAuto;
- import com.wyq.mysqldemo.databaseobject.UserKeyRandom;
- import com.wyq.mysqldemo.databaseobject.UserKeyUUID;
- import com.wyq.mysqldemo.diffkeytest.AutoKeyTableService;
- import com.wyq.mysqldemo.diffkeytest.RandomKeyTableService;
- import com.wyq.mysqldemo.diffkeytest.UUIDKeyTableService;
- import com.wyq.mysqldemo.util.JdbcTemplateService;
- import org.junit.jupiter.api.Test;
- import org.springframework.beans.factory.annotation.Autowired;
- import org.springframework.boot.test.context.SpringBootTest;
- import org.springframework.util.StopWatch;
- import java.util.List;
- @SpringBootTest
- class MysqlDemoApplicationTests {
- @Autowired
- private JdbcTemplateService jdbcTemplateService;
- @Autowired
- private AutoKeyTableService autoKeyTableService;
- @Autowired
- private UUIDKeyTableService uuidKeyTableService;
- @Autowired
- private RandomKeyTableService randomKeyTableService;
- @Test
- void testDBTime() {
- StopWatch stopwatch = new StopWatch("执行sql时间消耗");
- /**
- * auto_increment key任务
- */
- final String insertSql = "INSERT INTO user_key_auto(user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?)";
- List<UserKeyAuto> insertData = autoKeyTableService.getInsertData();
- stopwatch.start("自动生成key表任务开始");
- long start1 = System.currentTimeMillis();
- if (CollectionUtil.isNotEmpty(insertData)) {
- boolean insertResult = jdbcTemplateService.insert(insertSql, insertData, false);
- System.out.println(insertResult);
- }
- long end1 = System.currentTimeMillis();
- System.out.println("auto key消耗的时间:" + (end1 - start1));
- stopwatch.stop();
- /**
- * uudID的key
- */
- final String insertSql2 = "INSERT INTO user_uuid(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";
- List<UserKeyUUID> insertData2 = uuidKeyTableService.getInsertData();
- stopwatch.start("UUID的key表任务开始");
- long begin = System.currentTimeMillis();
- if (CollectionUtil.isNotEmpty(insertData)) {
- boolean insertResult = jdbcTemplateService.insert(insertSql2, insertData2, true);
- System.out.println(insertResult);
- }
- long over = System.currentTimeMillis();
- System.out.println("UUID key消耗的时间:" + (over - begin));
- stopwatch.stop();
- /**
- * 随机的long值key
- */
- final String insertSql3 = "INSERT INTO user_random_key(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";
- List<UserKeyRandom> insertData3 = randomKeyTableService.getInsertData();
- stopwatch.start("随机的long值key表任务开始");
- Long start = System.currentTimeMillis();
- if (CollectionUtil.isNotEmpty(insertData)) {
- boolean insertResult = jdbcTemplateService.insert(insertSql3, insertData3, true);
- System.out.println(insertResult);
- }
- Long end = System.currentTimeMillis();
- System.out.println("随机key任务消耗时间:" + (end - start));
- stopwatch.stop();
- String result = stopwatch.prettyPrint();
- System.out.println(result);
- }
程序写入结果
user_key_auto 写入结果:
user_random_key 写入结果:
user_uuid 表写入结果:
效率测试结果
在已有数据量为 130W 的时候:我们再来测试一下插入 10w 数据,看看会有什么结果:
可以看出在数据量 100W 左右的时候,uuid 的插入效率垫底,并且在后序增加了 130W 的数据,uuid 的时间又直线下降。
时间占用量总体可以打出的效率排名为:auto_key>random_key>uuid。
uuid 的效率最低,在数据量较大的情况下,效率直线下滑。那么为什么会出现这样的现象呢?带着疑问,我们来探讨一下这个问题:
使用 uuid 和自增 id 的索引结构对比
使用自增 id 的内部结构
自增的主键的值是顺序的,所以 InnoDB 把每一条记录都存储在一条记录的后面。
当达到页面的最大填充因子时候(InnoDB 默认的最大填充因子是页大小的 15/16,会留出 1/16 的空间留作以后的修改)。
①下一条记录就会写入新的页中,一旦数据按照这种顺序的方式加载,主键页就会近乎于顺序的记录填满,提升了页面的最大填充率,不会有页的浪费。
②新插入的行一定会在原有的最大数据行下一行,MySQL 定位和寻址很快,不会为计算新行的位置而做出额外的消耗。
③减少了页分裂和碎片的产生。
使用 uuid 的索引内部结构
因为 uuid 相对顺序的自增 id 来说是毫无规律可言的,新行的值不一定要比之前的主键的值要大,所以 innodb 无法做到总是把新行插入到索引的最后,而是需要为新行寻找新的合适的位置从而来分配新的空间。
这个过程需要做很多额外的操作,数据的毫无顺序会导致数据分布散乱,将会导致以下的问题:
①写入的目标页很可能已经刷新到磁盘上并且从缓存上移除,或者还没有被加载到缓存中,innodb 在插入之前不得不先找到并从磁盘读取目标页到内存中,这将导致大量的随机 IO。
②因为写入是乱序的,innodb 不得不频繁的做页分裂操作,以便为新的行分配空间,页分裂导致移动大量的数据,一次插入最少需要修改三个页以上。
③由于频繁的页分裂,页会变得稀疏并被不规则的填充,最终会导致数据会有碎片。
在把随机值(uuid 和雪花 id)载入到聚簇索引(InnoDB 默认的索引类型)以后,有时候会需要做一次 OPTIMEIZE TABLE 来重建表并优化页的填充,这将又需要一定的时间消耗。
结论:使用 InnoDB 应该尽可能的按主键的自增顺序插入,并且尽可能使用单调的增加的聚簇键的值来插入新行。
使用自增 id 的缺点
那么使用自增的 id 就完全没有坏处了吗?并不是,自增 id 也会存在以下几点问题:
①别人一旦爬取你的数据库,就可以根据数据库的自增 id 获取到你的业务增长信息,很容易分析出你的经营情况。
②对于高并发的负载,InnoDB 在按主键进行插入的时候会造成明显的锁争用,主键的上界会成为争抢的热点,因为所有的插入都发生在这里,并发插入会导致间隙锁竞争。
③Auto_Increment 锁机制会造成自增锁的抢夺,有一定的性能损失。
附:Auto_increment的锁争抢问题,如果要改善需要调优 innodb_autoinc_lock_mode 的配置。
总结
本篇博客首先从开篇的提出问题,建表到使用 jdbcTemplate 去测试不同 id 的生成策略在大数据量的数据插入表现,然后分析了 id 的机制不同在 MySQL 的索引结构以及优缺点,深入的解释了为何 uuid 和随机不重复 id 在数据插入中的性能损耗,详细的解释了这个问题。
在实际的开发中还是根据 MySQL 的官方推荐最好使用自增 id,MySQL 博大精深,内部还有很多值得优化的点需要我们学习。
作者:Yrion
编辑:陶家龙
出处:cnblogs.com/wyq178/p/12548864.html