机器人懂点「常识」,找东西快多了:CMU打造新型语义导航机器人

新闻 人工智能
想让机器人像人一样思考,似乎一直是个难题。例如,让机器人去拿放在「植物」旁边的遥控器,机器人几乎立即检测出了「植物」盆栽所在的位置,从而检测到遥控器的存在。

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

 想让机器人像人一样思考,似乎一直是个难题。

例如,让机器人去拿放在「植物」旁边的遥控器,机器人几乎立即检测出了「植物」盆栽所在的位置,从而检测到遥控器的存在。

项目已被ECCV 2020收录,并获得了居住地目标导航挑战赛的第一名。

一起来看看实现的过程。

让机器人「学点常识」

事实上,以往大部分采用机器学习训练的语义导航机器人,找东西的效果都不太好。

相比于人类潜意识中形成的常识,机器人往往有点“死脑筋”,它们更倾向于去记住目标物体的位置

但物体所处的场景往往非常复杂,而且彼此间差异很大(正所谓每个人的家,乱得各有章法),如果单纯以大量不同场景对系统进行训练,模型泛化能力都不太好。

于是,相比于用更多的样本对系统进行训练,这次研究者们换了一种思路:

采用半监督学习的方式,使用一种名为semantic curiosity(语义好奇心)的奖励机制对系统进行训练。

训练的核心目的,是让系统基于对语义的「理解」来确定目标物体的最优位置,换而言之,就是让机器人“学点常识”。

举个例子,通过理解冰箱和洗手间的差异,机器人就能搞懂目标物体和房间布局的关系,并计算出最容易找到某个物体的房间。(就像沙发通常会在客厅、而不是在洗手间)

一旦确定了物体最可能出现的地方,机器人就能通过导航,直接去往预计的位置,并快速检测到目标物体的存在,这个过程被称之为探索策略(exploration policy)。

采用Mask RCNN训练探索策略

如下图所示,策略的实现被分成了三步:学习、训练、测试。

机器人懂点「常识」,找东西快多了:CMU打造新型语义导航机器人

首先,采用Mask RCNN对图像从上至下进行目标预测,用于训练探索策略,后者负责生成目标检测和场景分割所需的训练数据。

对训练数据进行标记后,数据会被用于微调和评估目标检测及场景分割的效果。

在目标检测的过程中,即使面对某一物体的镜头转360度,机器人也必须将之识别为同一种物体。

这其中最关键的一个步骤,在于构造语义地图

构造「有魔法的」地图

从下图可见,图像被处理成RGB和Depth两种模式。

机器人懂点「常识」,找东西快多了:CMU打造新型语义导航机器人

其中,RGB图像会通过Mask RCNN网络,用于获得目标分割预测。

而Depth架构,则被用于计算点云,其中的每个点,都会在Mask RCNN的预测结果基础上与语义标签进行关联。

最后,基于几何计算,会在空间中会生成一个三维立体图。

每一个通道用于表示一种物体类别,原本2D的地图就会转变成一个3D的语义地图。

有了语义地图,机器人在移动时也能准确地对3D空间进行目标预测了。

「语义好奇心」奖励机制

不过,这会出现一种情况,如果目标物体在不同的帧上被预测的标签不同,那么语义图中对应这个物体的多个通道都会是1。

如下图,不同的时间,系统预测的目标标签可能并不一样,有时候是床,有时候则变成了沙发。

机器人懂点「常识」,找东西快多了:CMU打造新型语义导航机器人

这就出现了语义好奇心的策略。

论文定义了语义好奇心累计奖励(cumulative semantic curiosity reward),指占语义地图中所有元素总和的比例。

而语义好奇心奖励机制,则采用强化学习的方式,目的是使这个比例最大化。

机器人懂点「常识」,找东西快多了:CMU打造新型语义导航机器人

通过了解物体之间的差异、从而了解房间布局,系统就会逐渐理解房间与物体的联系。

实验结果

事实证明,这种方法非常有效。

机器人在训练过程中,可以专注地去理解目标物体与房间布局的关系,而非不停地进行路径规划。

训练出的机器人,在人机交互方向上变得更加容易操控。

例如,在各种方法下,即使探索区域不及倒数第二和第三种方法,但语义好奇心仍然检测出了相当的目标数量。

机器人懂点「常识」,找东西快多了:CMU打造新型语义导航机器人

这说明它在进行目标检测时,能更专注于所需要探测的物体。

而从下图可见,语义好奇心明显发现了更多其他策略无法发现的物体,这对于检测目标是非常有效的。

机器人懂点「常识」,找东西快多了:CMU打造新型语义导航机器人

在最终的训练结果中,语义好奇心拿到了最高的39.96分。

机器人懂点「常识」,找东西快多了:CMU打造新型语义导航机器人

这个方法,使得人与机器人之间的交互也变得更加容易实现。

作者介绍

Devendra Singh Chaplot,在卡内基梅隆大学(CMU)读博,主要研究深度强化学习、以及其在机器人和自然语言处理方向上的应用。

[[334879]]

传送门:

论文链接:https://arxiv.org/pdf/2006.09367.pdf

项目链接:https://devendrachaplot.github.io/projects/SemanticCuriosity

 

责任编辑:张燕妮 来源: 量子位
相关推荐

2020-04-09 09:56:55

机器人导航框架

2020-10-15 15:42:00

人工智能

2021-07-22 10:17:55

加密机器人加密货币机器人

2021-08-19 15:44:20

机器人人工智能机器学习

2015-07-28 09:36:11

机器人

2015-12-10 21:49:32

IM机器人

2012-03-08 09:42:16

开源软件Linux

2017-08-21 13:31:44

AI聊天机器人facebook

2013-11-12 10:37:20

开源自动导航蓝牙机器人

2022-06-06 14:56:03

机器人算法模型

2023-08-21 13:31:36

2022-10-21 17:30:26

机器人

2019-03-05 10:38:44

机器人人工智能系统

2022-07-28 11:26:41

人工智能机器人

2021-08-19 15:46:08

机器人人工智能机器学习

2019-01-27 15:03:52

机器人下岗智障机器人

2021-01-28 19:34:49

人工智能AI机器人

2020-04-10 21:36:46

协作机器人物联网机器人

2020-03-05 20:37:08

工业4.0机器人工业物联网
点赞
收藏

51CTO技术栈公众号