5种用于Python的强化学习框架

人工智能 机器学习
从头开始编写自己的Reinforcement Learning实施可能会花费很多工作,但是您不需要这样做。 有许多出色,简单和免费的框架可让您在几分钟之内开始学习。

从头开始编写自己的Reinforcement Learning实施可能会花费很多工作,但是您不需要这样做。 有许多出色,简单和免费的框架可让您在几分钟之内开始学习。

5种用于Python的强化学习框架

有很多标准的库用于监督和无监督的机器学习,例如Scikit-learn,XGBoost甚至Tensorflow,这些库可以立即让您入门,并且可以在线找到支持的日志。 可悲的是,对于强化学习(RL)并非如此。

并不是说没有框架,事实上,有很多RL框架。 问题是尚无标准,因此很难找到在线开始,解决问题或定制解决方案的支持。 这可能是由于以下事实造成的:尽管RL是一个非常受欢迎的研究主题,但它仍处于行业实施和使用的初期。

但这并不意味着就没有强大的框架可以帮助您启动并使用RL解决您喜欢的任何问题。 我在这里列出了一些我逐渐了解和使用的框架,以及它们的优缺点。 我希望这能为您提供有关当前可用的RL框架的快速概述,以便您可以选择更适合您的需求的框架。

1. Keras-RL

[[329009]]

我必须从整个列表中承认,这是我的最爱。 我认为,到目前为止,它是几种RL算法的代码实现的最简单的理解,包括深度Q学习(DQN),双DQN,深度确定性策略梯度(DDPG),连续DQN(CDQN或NAF),交叉熵方法(CEM) ,决斗DQN)和SARSA。 当我说"最容易理解的代码"时,我指的不是使用它,而是对其进行自定义并将其用作您的项目的构建块*。 Keras-RL github还包含一些示例,您可以立即使用它们来入门。 它当然使用Keras,您可以将其与Tensorflow或PyTorch一起使用。

不幸的是,Keras-RL尚未得到很好的维护,其官方文档也不是最好的。 这为这个名为Keras-RL2的项目的分支提供了启发。

(*)我使用此框架的目的是什么? 好吧,很高兴您问-是我吗? 我已经使用此框架创建了定制的Tutored DQN代理,您可以在此处了解更多信息。

2. Keras-RL2

Keras-RL2是Keras-RL的一个分支,因此它与Keras-RL2共享对相同代理的支持,并且易于定制。 这里最大的变化是Keras-RL2得到了更好的维护,并使用了Tensorflow 2.1.0。 不幸的是,该库没有文档,即使Keras-RL的文档也可以轻松地用于此fork。

3. OpenAI Baselines

OpenAI Baselines是OpenAI的一组高质量RL算法实现,OpenAI是AI尤其是RL研究和开发的领先公司之一。 它的构想是使研究人员可以轻松地比较其RL算法,并以OpenAI的最新技术(即名称)为基准。 该框架包含许多流行代理的实现,例如A2C,DDPG,DQN,PPO2和TRPO。

5种用于Python的强化学习框架

> [plots from Stable baselines benchmark.]

不利的一面是,尽管在代码上有很多有用的注释,但OpenAI Baselines的文档却不够完善。 另外,由于它被开发为用作基准而不是用作构建基块,因此如果您要为项目自定义或修改某些代理,则代码不是那么友好。 实际上,下一个框架是此基础上的一个分支,可以解决大多数这些问题。

4. Stable Baselines

[[329010]]

> [image from Stable Baselines documentation.]

Stable Baselines 是OpenAI Baselines的一个分支,具有主要的结构重构和代码清除功能。 其官方文档站点中列出的更改如下:

  • 所有算法的统一结构
  • 符合PEP8(统一代码样式)
  • 记录的功能和类
  • 更多测试和更多代码覆盖率
  • 附加算法:SAC和TD3(+对DQN,DDPG,SAC和TD3的HER支持)

我过去曾亲自使用过"Stable Baselines",可以确认它确实有据可查且易于使用。 甚至可以使用一个班轮来训练OpenAI Gym环境的代理:

  1. from stable_baselines import PPO2PPO2model = PPO2('MlpPolicy', 'CartPole-v1').learn(10000) 

5. Acme

[[329011]]

Acme来自DeepMind,它可能是研究RL的最著名公司。 这样,它已被开发用于构建可读的,高效的,面向研究的RL算法,并且包含几种最新代理的实现,例如D4PG,DQN,R2D2,R2D3等。 Acme使用Tensorflow作为后端,并且某些代理实现还使用JAX和Tensorflow的组合。

Acme的开发牢记要使其代码尽可能地可重用,因此其设计是模块化的,易于定制。 它的文档并不丰富,但是足以为您很好地介绍该库,并且还提供了一些示例来帮助您入门Jupyter笔记本。

总结

此处列出的所有框架都是任何RL项目的可靠选择。 根据您的喜好以及要使用的功能来决定使用哪个。 为了更好地可视化每个框架及其优缺点,我做了以下视觉摘要:

  • Keras-RL — Github:RL算法的选择:☆☆☆文档:☆☆☆自定义:☆☆☆☆☆维护:☆后端:Keras和Tensorflow 1.14。
  • Keras-RL2 — Github:RL算法的选择:☆☆☆文档:不可用自定义:☆☆☆☆☆维护:☆☆☆后端:Keras and Tensorflow 2.1.0。
  • OpenAI基准— Github:RL算法的选择:☆☆☆文档:☆☆自定义:☆☆维护:☆☆☆后端:Tensorflow 1.14。
  • 稳定的基线— Github:RL算法的选择:☆☆☆☆文档:☆☆☆☆☆自定义:☆☆☆维护:☆☆☆☆☆后端:Tensorflow 1.14。
  • Acme-Github:RL算法的选择:☆☆☆☆文档:☆☆☆自定义:☆☆☆☆维护:☆☆☆☆☆后端:Tensorflow v2 +和JAX

如果您已经决定使用哪种框架,那么现在只需要一个环境即可。 您可以开始使用OpenAI Gym,在这些框架的大多数示例中已经使用了OpenAI Gym,但是如果您想在其他任务(例如交易股票,建立网络关系或提出建议)上尝试RL,则可以找到易于使用的清单。

 

责任编辑:赵宁宁 来源: 今日头条
相关推荐

2020-11-16 08:54:05

Google 开源技术

2021-09-26 13:50:52

AI 数据强化学习

2023-03-09 08:00:00

强化学习机器学习围棋

2020-08-10 06:36:21

强化学习代码深度学习

2018-08-29 08:13:22

Google 学习框架技术

2024-08-28 13:53:42

多代理强化学习机器人

2020-11-12 19:31:41

强化学习人工智能机器学习

2024-01-30 09:00:28

框架BMRL模型

2021-09-17 15:54:41

深度学习机器学习人工智能

2022-11-02 14:02:02

强化学习训练

2020-04-27 09:52:03

预测销售机器学习ML

2023-11-07 07:13:31

推荐系统多任务学习

2019-01-31 10:42:04

框架AI开发

2023-07-20 15:18:42

2019-09-29 10:42:02

人工智能机器学习技术

2020-05-06 16:07:05

百度飞桨

2024-04-03 07:56:50

推荐系统多任务推荐

2023-12-03 22:08:41

深度学习人工智能

2022-05-31 10:45:01

深度学习防御

2020-05-12 07:00:00

深度学习强化学习人工智能
点赞
收藏

51CTO技术栈公众号