用PyTorch实现一个简单的分类器

人工智能 深度学习
这篇文章我们先考虑在一个自己定义的简单数据集上实现分类,这样子可以最简单的了解一个神经网络的模型,如何用 pytorch 搭建起来。

[[328922]]

 回想了一下自己关于 pytorch 的学习路线,一开始找的各种资料,写下来都能跑,但是却没有给自己体会到学习的过程。有的教程一上来就是写一个 cnn,虽然其实内容很简单,但是直接上手容易让人找不到重点,学的云里雾里。有的教程又浅尝辄止,师傅领到了门槛跟前,总感觉自己还没有进门,教程就结束了。

所以我总结了一下自己当初学习的路线,准备继续深入巩固自己的 pytorch 基础;另一方面,也想从头整理一个教程,从没有接触过 pytorch 开始,到完成一些最新论文里面的工作。以自己的学习笔记整理为主线,大家可以针对参考。

第一篇笔记,我们先完成一个简单的分类器。主要流程分为以下三个部分:

1,自定义生成一个训练集,具体为在二维平面上的一些点,分为两类;

2,构建一个浅层神经网络,实现对特征的拟合,主要是明白在 pytorch 中网络结构如何搭建;

3,完成训练和测试部分的工作,熟悉 pytorch 如何对网络进行训练和测试。

1. 自定义生成数据集 

  1. n_data = torch.ones(100, 2)  
  2. x0 = torch.normal(2*n_data, 1)  
  3. y0 = torch.zeros(100)  
  4. x1 = torch.normal(-2*n_data, 1)  
  5. y1 = torch.ones(100)  
  6. x = torch.cat((x0, x1)).type(torch.FloatTensor)  
  7. y = torch.cat((y0, y1)).type(torch.LongTensor) 

这篇文章我们先考虑在一个自己定义的简单数据集上实现分类,这样子可以最简单的了解一个神经网络的模型,如何用 pytorch 搭建起来。

这个代码对 numpy 比较熟悉的同学应该也可以猜出来它的内容,只是在 numpy 中是一个 numpy array,在 pytorch 中是一个 tensor。这里我简单的介绍一下这几行代码的作用,给有需要的同学捋顺思路。

首先 n_data 是基准数据,用来生成其它数据,内容为一个 100 行 2 列 的 tensor,其中的值都为 1。x0 是一类数据的坐标值,通过这个 n_data 来生成。

具体的生成的办法是用 torch.normal() 这个函数,第一个参数为 mean,第二个参数是 std。所以返回的结果 x0 是一个和 n_data 形状一样,但是其中的数据在以 2 为平均值,以 1 为标准差的正态分布中随机选取的。y0 则是一个 100 维的 tensor,其中的值都为 0。

我们可以这样理解 x0 和 y0,x0 的形状是 100 行 2 列的 tensor,其中的值以 2 为中心进行随机分布,符合正态分布,而这些点的标签我们设置为 y0,也就是 0。与此相反,x1 对应的中心为 -2,且标签为 y1,也就是每个点的标签都为 1。

最后生成的 x 和 y,就是将所有的数据合并起来,x0 和 x1 合并起来作为数据,y0 和 y1 合并起来作为标签。

2. 构建一个浅层神经网络 

  1. class Net(torch.nn.Module):  
  2.     def __init__(self, n_feature, n_hidden, n_output):  
  3.         super(Net, self).__init__()  
  4.         self.n_hidden = torch.nn.Linear(n_feature, n_hidden)  
  5.         self.out = torch.nn.Linear(n_hidden, n_output)  
  6.     def forward(self, x_layer):  
  7.         x_layer = torch.relu(self.n_hidden(x_layer))  
  8.         x_layer = self.out(x_layer) 
  9.          x_layer = torch.nn.functional.softmax(x_layer)  
  10.         return x_layer  
  11. net = Net(n_feature=2n_hidden=10n_output=2 
  12. # print(net)  
  13. optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  
  14. loss_func = torch.nn.CrossEntropyLoss() 

上面的 Net() 类就是如何构建一个神经网络的步骤。我们如果是第一次用 pytorch 写一个神经网络,那么这个就是一个足够简单的例子了。其中的内容由两部分组成,分别是 __init__() 函数和 forward() 函数。

大家可以简单的这样子理解:__init__() 函数中,是对网络结构的定义,都有哪些层,每层又有什么功能。例如这个函数中,self.n_hidden 就是定义了一个线性拟合函数,也就是全连接层,在此处相当于一个向隐藏层的映射。输入是 n_feature,输出是隐藏层的神经元个数 n_hidden。然后 self.out 也一样是一个全连接层,输入是刚才的隐藏层的神经元个数 n_hidden,输出是最后的输出结果 n_output。

接着就是 forward() 函数,在这里相当于定义我们神经网络的执行顺序。所以这里可以看到,先对输入的 x_layer 执行上面的隐藏层函数,也就是第一个全连接 self.n_hidden(),然后对输出再执行激活函数 relu。接下来如法炮制,经过一个输出层 self.out(),得到最后的输出。然后将输出 x_layer 返回。

optimizer 就是这里定义的优化方式,其中的 lr 是学习率的参数。然后损失函数我们选择交叉熵损失函数,也就是上面的最后一行代码。优化算法和损失函数,可以在 pytorch 中直接选择不同的 api 接口,形式上直接参考上面这种固定形式便可。

3. 完成训练和测试 

  1. for i in range(100):  
  2.     out = net(x)  
  3.     # print(out.shape, y.shape)  
  4.     loss = loss_func(out, y)  
  5.     optimizer.zero_grad()  
  6.     loss.backward()  
  7.     optimizer.step() 

接下来我们看一下如何进行训练的过程。net() 是我们对 Net() 类实例化出来的一个对象,所以利用 net() 可以直接完成模型的运行,out 就是模型预测出来的结果,loss 则是和真实值按照交叉熵损失函数计算出来的误差。

下面的三行代码是一个标准形式,表示了如何进行梯度的反向传播。到此其实我们的训练已经完成了,这个网络现在可以直接拿来对测试的数据集进行预测分类了。 

  1. # train result  
  2. train_result = net(x)  
  3. # print(train_result.shape)  
  4. train_predict = torch.max(train_result, 1)[1]  
  5. plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=train_predict.data.numpy(), s=100lw=0cmap='RdYlGn' 
  6. plt.show() 

为了让大家更好的理解这个模型的作用,这里我们来做一些可视化的工作,看看一个模型的学习效果。通过 python 很常见的一个数据可视化的库 matplotlib 可以实现这个目标,具体的 matplotlib 的用法就不介绍了。

这里的作用是显示出来训练好的模型对训练集的分类效果,可以理解为训练误差。

 

  1. # test  
  2. t_data = torch.zeros(100, 2)  
  3. test_data = torch.normal(t_data, 5)  
  4. test_result = net(test_data)  
  5. prediction = torch.max(test_result, 1)[1]  
  6. plt.scatter(test_data[:, 0], test_data[:, 1], s=100c=prediction.data.numpy(), lw=0cmap='RdYlGn' 
  7. plt.show() 

然后我们以 0 为 mean,随机生成一些数据,来看看模型会怎么去分类这些数据点。

虽然没有画出来那条训练好的分割线,但是我们也可以看到模型学习了一个分割的界面,来将数据划分为两类。 

 

责任编辑:庞桂玉 来源: Python中文社区
相关推荐

2016-11-08 18:53:08

编译器

2022-10-21 14:21:46

JavaScript笔记技能

2021-06-25 10:38:05

JavaScript编译器前端开发

2014-04-14 15:54:00

print()Web服务器

2018-09-18 10:11:21

前端vue.jsjavascript

2021-07-20 10:30:46

Golanghttp语言

2023-07-10 07:58:45

2020-07-20 10:00:52

Python翻译工具命令行

2017-06-08 15:53:38

PythonWeb框架

2021-08-30 09:25:25

Bert模型PyTorch语言

2020-11-16 09:02:38

Python开发工具

2022-11-29 17:34:43

虚拟形象系统

2022-06-02 09:09:27

前端React低代码编辑器

2019-09-23 09:11:02

Python文本编辑器操作系统

2024-05-07 09:02:47

2024-01-08 08:36:29

HTTPGo代理服务器

2013-12-10 22:35:56

CloudStackIaaS自动化

2022-01-17 09:22:42

SwiftUI App Store开源

2023-12-31 16:35:31

Pytorch函数深度学习

2021-05-20 07:56:35

Bean容器Spring
点赞
收藏

51CTO技术栈公众号