使用Python掌握Apache Kafka应当了解的3个库

开发 后端 Kafka
数据赋予了世界力量。 我们每秒获取大量信息,我们对其进行清理,分析并创建更有价值的输出,无论是日志文件,用户活动,聊天消息还是其他内容。 我们提供的速度越快,便会为客户带来更多的价值。 我们正处于一个快节奏且瞬息万变的环境时代。

 数据赋予了世界力量。 我们每秒获取大量信息,我们对其进行清理,分析并创建更有价值的输出,无论是日志文件,用户活动,聊天消息还是其他内容。 我们提供的速度越快,便会为客户带来更多的价值。 我们正处于一个快节奏且瞬息万变的环境时代。

[[328122]]

Apache Kafka是一个分布式流平台,可以实时发布,订阅,存储和处理消息。 其基于拉式的体系结构减轻了重负载对服务的压力,使其易于扩展。 它以低延迟将大量数据从源移动到目的地。

关于推与拉架构的思考

我最近与人们讨论了不同服务架构的优缺点…

Kafka是基于JVM的平台,因此客户端的主流编程语言是Java。 但是,随着社区的蓬勃发展,高质量的开源Python客户端也已面世,并已用于生产中。

在本文中,我将介绍最著名的Python Kafka客户端:kafka-python,pykafka和confluent-kafka并进行比较。 最后,我将对每个图书馆的利弊发表自己的看法。

我们为什么要Kafka?

首先是第一件事。 为什么选择Kafka? Kafka旨在增强事件驱动的体系结构。 它通过提供高吞吐量,低延迟,高耐用性和高可用性解决方案来增强体系结构。 (这并不意味着您可以同时拥有所有它们,总会有一个权衡。阅读此白皮书以了解更多信息。)

如何为高性能和低延迟部署和优化Kafka

Apache Kafka®是一个功率流处理平台,他的白皮书讨论了如何针对以下情况优化Kafka部署:

除了其高性能外,另一个吸引人的功能是发布/订阅模型,其中发件人没有专门向收件人发送邮件。 而是根据主题将邮件传递到收件人可以订阅的集中位置。

这样,我们可以轻松地将应用程序解耦并摆脱整体设计。 让我们看一个例子,了解为什么去耦效果更好。

您创建的网站需要将用户活动发送到某个地方,因此您可以编写从网站到实时监控仪表板的直接连接。 这是一个简单的解决方案,效果很好。 有一天,您决定将用户活动存储在数据库中以备将来分析。 因此,您将另一个直接数据库连接写入到您的网站。 同时,您的网站越来越多的流量,并且您想通过添加警报服务,实时分析服务等来增强它的功能。

您的架构最终将像这样。 诸如大量代码仓库,安全性问题,可伸缩性问题和可维护性问题之类的问题将伤害您。

 

使用Python掌握Apache Kafka应当了解的3个库

 

> Architecture without decoupling (Created by Xiaoxu Gao)

您需要一个中心来分隔具有不同角色的应用程序。 对于创建事件的应用程序,我们称它们为生产者。 他们将事件发布到集中式中心。 每个事件(即消息)都属于一个主题。 消费者位于枢纽的另一侧。 他们从中心订阅了他们需要的主题,而无需直接与制作人交谈。

有了此模型,就可以轻松扩展和维护体系结构。 工程师可以将更多精力放在核心业务上。

 

使用Python掌握Apache Kafka应当了解的3个库

 

> Architecture with decoupling (Created by Xiaoxu Gao)

简而言之,Kafka设置

您可以从官方网站下载Apache Kafka。 快速入门可帮助您在10秒钟内启动服务器。

您也可以从Confluent平台下载Apache Kafka。 它是迄今为止最大的面向Kafka的流数据平台。 它为个人和企业提供了一系列围绕Kafka的基础架构服务,以便将数据作为实时流提供。 创始人是最初创建Apache Kafka的团队的成员。

每台Kafka服务器都称为代理,您可以以独立模式运行它或形成集群。 除了Kafka,我们还需要Zookeeper存储有关Kafka的元数据。 Zookeeper的行为就像协调器一样,负责管理分布式系统中每个代理的状态。

 

使用Python掌握Apache Kafka应当了解的3个库

 

> Kafka setup (Created by Xiaoxu Gao)

假设我们已经与1位Zookeeper和1位Kafka经纪人建立了基础架构。 现在该连接了! 原始的Java客户端提供5个API:

  • 生产者API:将消息发布到Kafka集群中的主题。
  • 使用者API:使用来自Kafka集群中主题的消息。
  • Streams API:使用主题中的消息,并将其转换为Kafka集群中的其他主题。 这些操作可以是过滤,联接,映射,分组等。
  • 连接API:无需编码即可直接将Kafka群集连接到源系统或接收器系统。 该系统可以是文件,关系数据库,Elasticsearch等。
  • 管理员API:管理和检查Kafka集群中的主题和代理。

Kafka的Python库

在Python世界中,已经实现了5个API中的3个,分别是Producer API,Consumer API和Admin API。 Python中还没有这样的Kafka Stream API,但是很好的替代方法是Faust。

本节中的测试是基于本地安装的1个Zookeeper和1个Kafka代理执行的。 这与性能调整无关,所以我主要使用该库提供的默认配置。

Kafka-Python

kafka-python的设计功能非常类似于官方的Java客户端,并带有大量pythonic接口。 最好与Kafka 0.9+版本一起使用。 第一版发布于2014年3月。正在积极维护中。

安装

pip install kafka-python

每个消息都是通过send()异步发送的。 调用时,它将记录添加到缓冲区并立即返回。 这使生产者可以以批处理方式将记录发送到Kafka经纪人以提高效率。 异步可以极大地提高速度,但是我们还应该了解以下几点:

  • 在异步模式下,不能保证排序。 您无法控制Kafka经纪人何时确认(确认)每封邮件。
  • 为生产者提供成功回调和失败回调是一个好习惯。 例如,您可以在成功回调中编写信息日志消息,而在失败回调中编写异常日志消息。
  • 由于无法保证顺序,因此在回调中收到异常之前,可能会发送额外的消息。

如果要避免这些问题,可以选择同步发送消息。 send()的返回是FutureRecordMetadata。 通过执行future.get(timeout = 60),生产者将被阻止最多60秒钟,直到代理成功确认消息为止。 缺点是速度,与异步模式相比,它相对较慢。

消费者

使用者实例是一个Python迭代器。 消费者类的核心是poll()方法。 它允许使用者继续从主题中提取消息。 它的输入参数timeout_ms之一默认为0,这意味着该方法将立即返回所有在缓冲区中拉出并可用的记录。 您可以增加timeout_ms以返回更大的批次。

默认情况下,每个使用者都是一个无限的侦听器,因此它不会停止运行,直到程序中断。 但另一方面,您可以根据收到的消息停止使用者。 例如,您可以退出循环并在达到某个偏移量时关闭使用者。

也可以将使用者分配给一个分区或来自多个主题的多个分区。

这是kafka-python库的测试结果。 每个消息的大小为100字节。 生产者的平均吞吐量为1.4MB / s。 使用者的平均吞吐量为2.8MB / s。

Confluent-kafka

Confluent-kafka是Python的高性能Kafka客户端,它利用高性能C客户端librdkafka。 从1.0版开始,这些作为PyPi上的OS X和Linux的独立二进制轮分发。 它支持Kafka 0.8+版本。 第一版发布于2016年5月。正在积极维护中。

安装

对于OS X和Linux,软件包中包括librdkafka,需要单独安装。

pip install confluent-kafka

对于Windows用户,在我撰写本文时,confluent-kafka尚未在Windows上支持Python3.8二进制轮子。 您将遇到librdkafka的问题。 请查看他们的发行说明,该说明正在积极开发中。 另一种解决方案是降级到Python3.7。

Confluent-kafka在速度方面具有令人难以置信的性能。 API的设计有点类似于kafka-python。 您可以通过将flush()放入循环中来使其同步。

消费者

confluent-kafka中的Consumer API需要更多代码。 您无需自己处理高级循环方法(例如,消耗()),而需要自己处理while循环。 我建议您创建自己的consump(),它实际上是一个Python生成器。 只要有一条消息被拉出并且在缓冲区中可用,它就会产生该消息。

这样,主要功能将变得干净,您可以自由控制消费者的行为。 例如,您可以在consumpt()中定义一个"会话窗口"。 如果在X秒钟内未提取任何消息,则使用者将停止。 或者,您可以添加标志infinite = True作为输入参数,以控制使用者是否应为无限侦听器。

这是confluent-kafka库的测试结果。 每个消息的大小为100字节。 生产者的平均吞吐量为21.97MBps。 消费者的平均吞吐量为16.8〜28.7MB / s。

PyKafka

PyKafka是Python的程序员友好的Kafka客户端。 它包括Kafka生产者和使用者的Python实现,可以选择由基于librdkafka的C扩展支持。 它支持Kafka 0.82+版本。 第一版发布于2012年8月,但自2018年11月以来未进行过更新。

安装

pip install pykafka

该软件包不附带librdkafka,您需要在所有操作系统中分别安装。

pykafka具有KafkaClient接口,该接口涵盖了ProducerAPI和Consumer API。

消息可以异步和同步模式发送。 我发现pykafka会修改某些生产者配置(例如linger_ms和min_queued_messages)的默认值,这会对发送少量数据产生影响。

您可以将其与Apache Kafka网站上的默认配置进行比较。

如果要获取每个消息的回调,请确保将min_queued_messages更改为1,否则如果数据集小于70000,则不会收到任何报告。

 

使用Python掌握Apache Kafka应当了解的3个库

 

> pykafka-producer-config

消费者

您可以从KafkaClinet界面获取SimpleConsumer。 这类似于kafka-python,其中民意调查被包装在SimpleConsumer类中。

这是pykafka库的测试结果。 每个消息的大小为100字节。 生产者的平均吞吐量为2.1MB / s。 使用者的平均吞吐量为1.57MB / s。

结论

到目前为止,我已经解释了每个库的Producer API和Consumer API。 就Admin API而言,kafka-python和confluent-kafka确实提供了显式的Admin API。 您可以在要创建主题的单元测试中使用它,然后在执行下一个测试之前将其删除。 此外,如果您想使用Python构建Kafka监控仪表板,则Admin API可以帮助您检索集群和主题的元数据。

Confluent-kafka:

毫无疑问,Confluent-kafka在这三个库中表现最佳。 该API的设计经过精心设计,参数与原始Apache Kafka相同的名称和默认值。 您可以轻松地将其链接到原始参数。 就个人而言,我喜欢自定义消费者行为的灵活性。 Confluent也正在积极开发和支持它。

缺点是Windows用户可能需要花费一些时间才能使其工作。 并且由于C扩展,调试可能很棘手。

kafka-python:

kafka-python是没有C扩展的纯Python库。 该API经过精心设计,对于初学者来说很容易使用。 这也是一个积极开发的项目。

python-kafka的缺点是它的速度。 如果您确实关心性能,建议您改用confluent-kafka。

pykafka:

与kafka-python和conflunet-kafka相比,pykafka的开发活动较少。 该版本的历史记录表明,自2018年11月以来尚未进行过更新。此外,pykafka具有不同的API设计,并使用了不同的默认参数,这可能不是第一次。

责任编辑:华轩 来源: 今日头条
相关推荐

2018-10-31 11:00:06

数据科学统计贝叶斯

2018-12-26 05:05:36

业务驱动安全绩效指标KPI

2015-08-27 10:39:59

新手程序员必知

2018-08-14 08:38:35

机器学习网站数据泄露

2015-08-18 09:28:30

程序员七条箴言

2024-03-08 22:39:55

GolangApacheKafka

2023-12-06 12:52:00

Python

2019-07-16 13:15:38

Kafka分布式数据

2022-02-19 21:22:23

Kafka事务API的

2020-05-14 10:26:27

KafkaSpark数据

2023-12-10 20:37:48

Kafka数据库工具

2020-07-22 14:50:35

Python数据分析

2023-10-23 10:06:53

数据性能

2018-07-05 08:30:54

Python命令行工具shell

2018-06-05 10:45:41

Python模板库模板引擎

2022-05-23 09:46:44

Python

2022-02-22 23:25:19

Python编程语言开发

2011-10-31 09:14:35

程序员

2020-05-22 22:39:14

智慧城市智能

2024-02-22 18:12:18

微服务架构设计模式
点赞
收藏

51CTO技术栈公众号