人工智能走向深度学习 构建强大的计算力是重要指标

人工智能 深度学习
据介绍,人工智能比较大的挑战之一是识别度不高、准确度不高,提高准确度就要提高模型的规模和精细度,提高线下训练的频次,这需要更强的计算力。

 据介绍,人工智能比较大的挑战之一是识别度不高、准确度不高,提高准确度就要提高模型的规模和精细度,提高线下训练的频次,这需要更强的计算力。当前随着人工智能算法模型的复杂度和精度愈来愈高,互联网和物联网产生的数据呈几何倍数增长,在数据量和算法模型的双层叠加下,人工智能对计算的需求越来越大。

[[322266]]

“2016年3月,谷歌人工智能阿尔法围棋(AlphaGo)战胜韩国棋手李世石时,人们慨叹人工智能的强大,而其背后巨大的‘付出’却鲜为人知——数千台服务器、上千块CPU、高性能显卡以及对弈一场棋所消耗的惊人电量。”远望智库人工智能事业部部长、图灵机器人首席战略官谭茗洲在接受科技日报记者采访时表示。

“相比云计算和大数据等应用,人工智能对计算力的需求几乎无止境。”中国工程院院士、浪潮集团首席科学家王恩东也指出。

据介绍,人工智能比较大的挑战之一是识别度不高、准确度不高,提高准确度就要提高模型的规模和精细度,提高线下训练的频次,这需要更强的计算力。

当前随着人工智能算法模型的复杂度和精度愈来愈高,互联网和物联网产生的数据呈几何倍数增长,在数据量和算法模型的双层叠加下,人工智能对计算的需求越来越大。

从中国信息通信研究院王蕴韬在通信世界网发表的文章了解,人工智能基础设施建设重要一方面是继续夯实通用算力基础。当前算力供给已经无法满足智能化社会构建,根据OpenAI统计,从2012年至2019年,随着深度学习“大深多”模型的演进,模型计算所需计算量已经增长30万倍,无论是计算机视觉还是自然语言处理,由于预训练模型的广泛使用,模型所需算力直接呈现阶跃式发展。

据斯坦福《AIINDEX2019》报告,2012年之前,人工智能的计算速度紧追摩尔定律,算力需求每两年翻一番,2012年以后,算力需求的翻番时长则直接缩短为3、4个月。面对已经每过20年才能翻一番的通用计算供给能力,算力捉襟见肘已经不言而喻。

无疑,人工智能走向深度学习,计算力已成为评价人工智能研究成本的重要指标。

未来如何解决算力难题,据科技日报报道,目前计算存储一体化正在助力、推动算法升级,成为下一代AI系统的入口。存内计算提供的大规模更高效的算力,使得AI算法设计有更充分的想象力,不再受到算力约束。从而将硬件上的先进性,升级为系统、算法的领先优势,最终加速孵化新业务。

而除了计算存储一体化的趋势,量子计算或是解决AI所需巨额算力的另一途径。目前量子计算机的发展已经超越传统计算机的摩尔定律,以传统计算机的计算能力为基本参考,量子计算机的算力正迅速发展。

责任编辑:华轩 来源: 中国安防行业网
相关推荐

2020-10-09 10:08:29

云计算

2019-03-30 14:25:59

人工智能互联网计算

2022-03-18 21:39:23

人工智能AI

2021-03-01 11:42:54

人工智能商业数据

2021-03-30 13:45:00

人工智能

2022-11-25 07:35:57

PyTorchPython学习框架

2024-02-26 00:00:00

人工智能序列数据机器人

2021-04-07 10:48:45

人工智能深度学习

2021-04-07 10:52:35

人工智能深度学习

2020-08-31 15:15:20

人工智能算法AI

2019-09-23 12:00:23

人工智能AI

2017-05-02 13:45:14

2021-12-01 22:55:45

人工智能机器学习深度学习

2021-04-16 09:53:45

人工智能机器学习深度学习

2022-07-01 07:27:08

人工智能智能客服

2022-11-13 08:11:03

TensorFlow人工智能开源

2024-09-06 15:36:56

2021-02-26 10:02:13

人工智能深度学习机器学习

2019-08-28 15:18:57

点赞
收藏

51CTO技术栈公众号