写在前边
在家远程办公第三周,快被手机上的消息搞的有些神经质了,生怕错过一条有用的信息,没办法形势如此,公司摇摇欲坠大家也都如履薄冰,毕竟这时候失业有点惨(穷怕了)。
但就干活来说还是比较清闲的,和在公司上班相比,清闲下来很多碎片时间,可以随意的做点自己喜欢的事情。而且我发现,人一但闲下来真的是好可怕,潜在的才能会全面爆发,我女朋友这个抖音深度患者,一年不做一回饭的主,一周内接连给我做了两顿黑暗料理,烤馒头版“蛋糕”、浆糊版“凉皮”,然后我就与厕所结下来不解之缘。。。
不过,作为一个程序员,我对黑暗料理是不太感兴趣滴,闲下来还是喜欢学习钻研一些新奇的技术,canal就成了很好的研究对象,一不小心就监控了公司MySQL的一举一动的
一、canal是个啥?
canal是阿里开发的一款基于数据库增量日志解析,提供增量数据订阅与消费的框架,整个框架纯JAVA开发,目前仅支持Mysql和MariaDB(和mysql类似)。
那什么是数据库增量日志?
MySQL的日志种类是比较多的,主要包含:错误日志、查询日志、慢查询日志、事务日志、二进制日志。而MySQL数据库所发生的数据变更(DML(data manipulation language)数据操纵语言,也就是我们熟悉的增删改),都会以二进制日志(binary log)形式存储。
二、canal原理
在介绍canal原理之前,我们先来回顾一下MySQL主从同步的原理,这或许会让你更好的理解canal的工作机制。
1、MySQL主从同步原理:
MySQL主从同步也叫读写分离,可以提升数据库的负载和容错能力,实现数据库的高可用
先来分析一张MySQL主从同步原理图:
master节点操作过程:
当master节点数据发生更改后(delete、update、insert,还是创建函数、存储过程等操作),向binary log中写入记录日志,这些记录又叫做二进制日志事件(binary log events)。
show binlog events
一旦master节点的bin log发生变化时,bin logdump线程会通知slave节点有可以传输的binlog,并将相应的bin log内容发送给slave节点。
slave节点操作过程:
slave节点上会创建两个线程:一个I/O线程,一个SQL线程。I/O线程连接到master节点,master节点上的binlog dump 线程会将binlog的内容发送给该I\O线程。
该I/O线程接收到binlog内容后,再将内容写入到本地的relay log。而sql线程读取到I/O线程写入的ralay log,将relay log中的内容写入slave数据库。
2、canal原理
懂了上边MySQL的主从同步原理,canal的工作机制就很好理解了。其实canal是模拟了MySQL数据库中,slave节点与master节点的交互协议,伪装自己为MySQL slave节点,向MySQL master节点发送dump协议,MySQL master节点收到dump请求,开始推送binary log给slave节点(也就是canal)。
光说不练假把式,开干!
三、canal实现“监控”MySQL
在写代码前我们先对MySQL进行一下改造,安装MySQL就不再细说了,基本操作。
1、查看一下MySQL是否开启了binary log功能
show binary logs
如果没有开启是图中的状态,一般用户是没有这个命令权限的,不过我有,啧啧啧!
log-bin=mysq-binbinlog-format=Row
log-bin是binlog文件存放位置binlog-format 设置MySQL复制log-bin的方式
MySQL的三种复制方式:
基于SQL语句的复制(statement-based replication, SBR)
- 优点:将修改数据的sql保存在binlog,不需要记录每一条sql和数据变化,binlog体量会很小,IO开销少,性能好
- 缺点:会导致master-slave中的数据不一致
基于行的复制(row-based replication, RBR)
- 优点:不记录每条sql语句的上下文信息,仅需记录哪条数据被修改了,修改成什么样了
- 缺点:binlog体积很大,尤其是在alter table属性时,会产生大量binlog数据
混合模式复制(mixed-based replication, MBR)
- 对应的,binlog的格式也有三种:STATEMENT,ROW,MIXED。
2、为canal 创建一个有权限操作MySQL的用户
CREATE USER canal IDENTIFIED BY 'canal'; GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';-- GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%' ;FLUSH PRIVILEGES;
3、安装canal
下载地址:https://github.com/alibaba/canal/releases
下载后选择版本例如:canal.deployer-xxx.tar.gz
4、配置canal
修改instance.properties文件,需要添加监听数据库和表的规则,canal可以全量监听数据库,也可以针对某个表进行监听,比较灵活。
vim conf/example/instance.properties
################################################### mysql serverIdcanal.instance.mysql.slaveId = 2020# position info 修改自己的数据库(canal要监听的数据库 地址 )canal.instance.master.address = 127.0.0.1:3306canal.instance.master.journal.name = canal.instance.master.position = canal.instance.master.timestamp = #canal.instance.standby.address = #canal.instance.standby.journal.name =#canal.instance.standby.position = #canal.instance.standby.timestamp = # username/password 修改成自己 数据库信息的账号 (单独开一个 准备阶段创建的账号)canal.instance.dbUsername = canalcanal.instance.dbPassword = canalcanal.instance.defaultDatabaseName =canal.instance.connectionCharset = UTF-8# table regex 表的监听规则 # canal.instance.filter.regex = blogs\.blog_info canal.instance.filter.regex = .\*\\\\..\*# table black regexcanal.instance.filter.black.regex =
启动canal
sh bin/startup.sh
看一下server日志,确认一下canal是否正常启动
vi logs/canal/canal.log
显示canal server is running now即为成功
2020-01-08 15:25:33.361 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## start the canal server.2020-01-08 15:25:33.468 [main] INFO com.alibaba.otter.canal.deployer.CanalController - ## start the canal server[192.168.12.245:11111]2020-01-08 15:25:34.061 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## the canal server is running now ......
5、编写Java客户端代码,实现canal监听
引入依赖包
<dependency> <groupId>com.alibaba.otter</groupId> <artifactId>canal.client</artifactId> <version>1.1.0</version></dependency>
这里只是简单实现
public class MainApp { public static void main(String... args) throws Exception { /** * 创建与 */ CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress(AddressUtils.getHostIp(), 11111), "example", "", ""); int batchSize = 1000; int emptyCount = 0; try { connector.connect(); /** * 监控数据库中所有表 */ connector.subscribe(".*\\..*"); /** * 指定要监控的表,库名.表名 */ //connector.subscribe("xin-master.jk_order"); connector.rollback(); //120次心跳过后未检测到,跳出 int totalEmptyCount = 120; while (emptyCount < totalEmptyCount) { Message message = connector.getWithoutAck(batchSize); // 获取指定数量的数据 long batchId = message.getId(); int size = message.getEntries().size(); if (batchId == -1 || size == 0) { emptyCount++; System.out.println("empty count : " + emptyCount); try { Thread.sleep(1000); } catch (InterruptedException e) { } } else { emptyCount = 0; // System.out.printf("message[batchId=%s,size=%s] \n", batchId, size); printEntry(message.getEntries()); } /** * 提交确认 */ connector.ack(batchId); /** * 处理失败, 回滚数据 */ connector.rollback(batchId); } System.out.println("empty too many times, exit"); } finally { connector.disconnect(); /** * 手动开启事务回滚 */ //TransactionAspectSupport.currentTransactionStatus().setRollbackOnly(); } } private static void printEntry(List<CanalEntry.Entry> entrys) { for (CanalEntry.Entry entry : entrys) { if (entry.getEntryType() == CanalEntry.EntryType.TRANSACTIONBEGIN || entry.getEntryType() == CanalEntry .EntryType .TRANSACTIONEND) { continue; } CanalEntry.RowChange rowChage = null; try { rowChage = CanalEntry.RowChange.parseFrom(entry.getStoreValue()); } catch (Exception e) { throw new RuntimeException("ERROR ## parser of eromanga-event has an error , data:" + entry.toString(), e); } CanalEntry.EventType eventType = rowChage.getEventType(); System.out.println(String.format("================> binlog[%s:%s] , name[%s,%s] , eventType : %s", entry.getHeader().getLogfileName(), entry.getHeader().getLogfileOffset(), entry.getHeader().getSchemaName(), entry.getHeader().getTableName(), eventType)); for (CanalEntry.RowData rowData : rowChage.getRowDatasList()) { if (eventType == CanalEntry.EventType.DELETE) { printColumn(rowData.getBeforeColumnsList()); } else if (eventType == CanalEntry.EventType.INSERT) { printColumn(rowData.getAfterColumnsList()); } else { System.out.println("-------> before"); printColumn(rowData.getBeforeColumnsList()); System.out.println("-------> after"); printColumn(rowData.getAfterColumnsList()); } } } } private static void printColumn(List<CanalEntry.Column> columns) { for (CanalEntry.Column column : columns) { System.out.println(column.getName() + " : " + column.getValue() + " update=" + column.getUpdated()); } }}
代码到这就编写完成了,我们启动服务看下是什么效果,由于并没有操作数据库,所以监听的结果都是空的。
update jk_orderset order_no = '1111' where id = 40
控制台检测到了数据库的修改,并生成binlog 日志文件mysql-bin.000009:3830
<!-- mysql binlog解析 --> <dependency> <groupId>com.github.shyiko</groupId> <artifactId>mysql-binlog-connector-java</artifactId> <version>0.13.0</version></dependency>
将刚才的binlog文件下载本地测试一下
public static void main(String[] args) throws IOException { String filePath = "C:\\ProgramData\\MySQL\\MySQL Server 5.7\\Data\\mysql-bin.000009:3830"; File binlogFile = new File(filePath); EventDeserializer eventDeserializer = new EventDeserializer(); eventDeserializer.setChecksumType(ChecksumType.CRC32); BinaryLogFileReader reader = new BinaryLogFileReader(binlogFile, eventDeserializer); try { for (Event event; (event = reader.readEvent()) != null; ) { System.out.println(event.toString()); } } finally { reader.close(); } }
查看一下执行结果,发现数据库最近的一次操作是加了一个idx_index索引
Event{header=EventHeaderV4{timestamp=1551325542000, eventType=ANONYMOUS_GTID, serverId=1, headerLength=19, dataLength=46, nextPosition=8455, flags=0}, data=null}Event{header=EventHeaderV4{timestamp=1551325542000, eventType=QUERY, serverId=1, headerLength=19, dataLength=190, nextPosition=8664, flags=0}, data=QueryEventData{threadId=25, executionTime=0, errorCode=0, database='xin-master', sql='ALTER TABLE `jk_order`DROP INDEX `idx_index` ,ADD INDEX `idx_index` (`user_id`, `service_id`, `real_price`) USING BTREE'}}Event{header=EventHeaderV4{timestamp=1551438586000, eventType=STOP, serverId=1, headerLength=19, dataLength=4, nextPosition=8687, flags=0}, data=null}
至此我们就已经实现了监控MySQL,
四、canal应用场景
canal应用场景大致有以下:
- 解决MySQL主从同步延迟的问题
- 实现数据库实时备份
- 多级索引 (卖家和买家各自分库索引)
- 实现业务cache刷新
- 价格变化等重要业务消息
重点分析一下canal是如何解决MySQL主从同步延迟的问题
生产环境下MySQL的主从同步模式(maser-slave)很常见,但对于跨机房部署的集群,会出现同步延时的情况。举个栗子:
一条订单状态是未付款,master节点修改成已付款,可由于某些原因出现延迟数据未能及时同步到slave,这时用户立即查看订单状态(查询走slave)显示还是未付款,哪个用户看到这种情况不得慌啊。
为什么会出现主从同步延迟呢?
当主库master的TPS并发较高时,master节点并发产生的修改操作,而slave节点的sql线程是单线程处理同步数据,延时自然而言就产生了。
不过造成主从同步的原因不止这些,由于主从服务器存在跨机器并且跨机房,除了网络带宽原因之外,网络的稳定性以及机器之间的同步,都是主从同步应该考虑的主要原因。
总结
本文只是简单实现canal监听数据库的功能,旨在给大家提供一种解决问题的思路,还是反复絮叨的那句话,解决问题的技术方法很对,具体如何应用还需结合具体业务。