本文主要分享如何提升Python性能的几个使用方法!
时序分析
优化之前,首先要找到是哪部分代码拖慢了整个程序的运行。有时候程序的"瓶颈"不是很明显,如果找不到,以下是一些建议以供参考:
注意:这是一个计算e的x次幂的演示程序(出自Python文档):
- # slow_program.py
- from decimal import*
- defexp(x):
- getcontext().prec +=2
- i, lasts, s, fact, num =0, 0, 1, 1, 1
- while s != lasts:
- lasts = s
- i +=1
- fact *= i
- num *= x
- s += num / fact
- getcontext().prec -=2
- return+s
- exp(Decimal(150))
- exp(Decimal(400))
- exp(Decimal(3000))
在GitHub上查看rawslow_program.py全部代码
最省力的“性能分析”
首先,最简单且最省力的解决方案是使用Unix的time命令:
- ~ $ time python3.8 slow_program.py
- real 0m11,058s
- user 0m11,050s
- sys 0m0,008s
在GitHub上查看rawbase_time.shell全部代码
如果只是给整个程序计时,它很有用,但还不足够……
最详细的性能分析
性能分析的另一方法是cProfile,从中能得到很大的信息量:
- ~ $ python3.8 -m cProfile -s time slow_program.py
- 1297 function calls (1272 primitive calls) in 11.081 seconds
- Ordered by: internal time
- ncalls tottime percall cumtime percall filename:lineno(function)
- 3 11.079 3.693 11.079 3.693 slow_program.py:4(exp)
- 1 0.000 0.000 0.002 0.002 {built-in method _imp.create_dynamic}
- 4/1 0.000 0.000 11.081 11.081 {built-in method builtins.exec}
- 6 0.000 0.000 0.000 0.000 {built-in method __new__ of type object at 0x9d12c0}
- 6 0.000 0.000 0.000 0.000 abc.py:132(__new__)
- 23 0.000 0.000 0.000 0.000 _weakrefset.py:36(__init__)
- 245 0.000 0.000 0.000 0.000 {built-in method builtins.getattr}
- 2 0.000 0.000 0.000 0.000 {built-in method marshal.loads}
- 10 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap_external>:1233(find_spec)
- 8/4 0.000 0.000 0.000 0.000 abc.py:196(__subclasscheck__)
- 15 0.000 0.000 0.000 0.000 {built-in method posix.stat}
- 6 0.000 0.000 0.000 0.000 {built-in method builtins.__build_class__}
- 1 0.000 0.000 0.000 0.000 __init__.py:357(namedtuple)
- 48 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap_external>:57(_path_join)
- 48 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap_external>:59(<listcomp>)
- 1 0.000 0.000 11.081 11.081 slow_program.py:1(<module>)
- ...
在GitHub上查看rawcprofile.shell全部代码
这里用cProfile模块和time参数运行测试脚本,以便按内部时间(cumtime)对行进行排序。从中可以得到很多信息,以上所列结果约为实际输出的10%。由此可见,exp函数就是拖慢程序的“罪魁祸首”(太神奇啦!),现在看看更详尽的时序和性能分析......
对特定函数计时
已经知道拖慢程序运行的函数,下一步可使用简单的修饰器,专门对该函数计时,不测量其余代码。如下所示:
- deftimeit_wrapper(func):
- @wraps(func)
- defwrapper(*args, **kwargs):
- start = time.perf_counter() # Alternatively, you can use time.process_time()
- funcfunc_return_val = func(*args, **kwargs)
- end = time.perf_counter()
- print( {0:<10}.{1:<8} : {2:<8} .format(func.__module__, func.__name__, end - start))
- return func_return_val
- return wrapper
在GitHub上查看rawtimeit_decorator.py全部代码
该修饰器可以应用于功能测试,如下所示:
- @timeit_wrapper
- defexp(x):
- ...
- print( {0:<10}{1:<8}{2:^8} .format( module , function , time ))
- exp(Decimal(150))
- exp(Decimal(400))
- exp(Decimal(3000))
在GitHub上查看rawtimeit_decorator_usage.py全部代码
输出如下:
- ~ $ python3.8 slow_program.py
- module function time
- __main__ .exp :0.003267502994276583
- __main__ .exp :0.038535295985639095
- __main__ .exp : 11.728486061969306
在GitHub上查看rawrun_with_timeit_decorator.shell全部代码
要考虑的一个问题是实际/想要测量的时间类型是什么。Time程序包提供了time.perf_counter和time.process_time。两者的区别是:perf_counter返回绝对值,其中包括Python程序进程未运行时的时间,因此可能会受计算机负载的影响;而process_time仅返回用户时间(不包括系统时间),这仅是程序的运行时间。
加快程序运行速度
图源:Unsplash
这是全文有趣的部分,关于如何加快Python的程序运行速度。我并没有列出一些可以奇妙解决性能问题的小技巧或代码段,而是涉及一般性的构想和策略,它们能极大地提高性能,某些情况下甚至能将性能提高30%。
使用内置数据类型
显而易见,内置数据类型运行很快,尤其是与自定义类型(例如树或链表)相比。主要是因为内置程序是用C语言实现的,远超过用Python编码的运行速度。
使用lru_cache缓存/记忆
我已经在上一篇博文中讲过这块内容,但在此还是要用简单的示例说明:
- import functools
- import time
- # caching up to 12 different results
- @functools.lru_cache(maxsize=12)
- defslow_func(x):
- time.sleep(2) # Simulate long computation
- return x
- slow_func(1) # ... waiting for 2 sec before getting result
- slow_func(1) # already cached - result returned instantaneously!
- slow_func(3) # ... waiting for 2 sec before getting result
在GitHub上查看rawlru_cache.py全部代码
以上函数使用time.sleep模拟大量运算。第一次使用参数1调用该函数时,返回结果需要2秒。再次调用时,结果已被缓存,因此会跳过函数主体并立即返回结果。更多内容请参见此处。
使用局部变量
这与在每个作用域中查找变量的速度有关。我用了“每个作用域”这个字眼,因为它不仅仅是“使用局部变量还是全局变量”的问题。实际上,即使在函数的局部变量(最快)、类级属性(如self.name-较慢)和全局变量(如导入的函数,time.time-最慢)之间,查找速度也有所不同。
可以通过运行无用的任务来提高性能,如下所示:
- # Example #1
- classFastClass:
- defdo_stuff(self):
- temp =self.value # this speeds up lookup in loop
- for i inrange(10000):
- ... # Do something with `temp` here
- # Example #2
- import random
- deffast_function():
- r = random.random
- for i inrange(10000):
- print(r()) # calling `r()` here, is faster than global random.random()
在GitHub上查看rawlocal_vars.py全部代码
使用函数(Function)
这怎么和假想的不同?理论上调用函数不是会将更多的东西放到堆栈上,加大返回结果的负担吗?但实际上,使用函数确实能加快运行速度,这与前一点有关。将整个代码放在一个文件中而非函数中,它是全局变量而非局部变量,运行速度就会慢得多。因此,可以将整个代码包裹在main函数中并通过一次调用来加速代码,如下所示:
- defmain():
- ... # All your previously global code
- main()
在GitHub上查看rawglobal_vars.py全部代码
避免访问属性(Attribute)
可能拖慢程序的一个原因是使用点运算符(.)访问对象属性。该运算符通过使用__getattribute__方法触发了字典查找,使代码产生额外负担。那么,如何避免或减少属性访问?
- # Slow:
- import re
- defslow_func():
- for i inrange(10000):
- re.findall(regex, line) # Slow!
- # Fast:
- from re import findall
- deffast_func():
- for i inrange(10000):
- findall(regex, line) # Faster!
在GitHub上查看rawimports.py全部代码
当心使用字符串
在循环里使用格式符(%s)或.format()时,字符串操作可能会变得非常慢。有没有更好的选择?Raymond Hettinger在最近发布的推文中提到:唯一应该使用的是f-string(格式化字符串常量),它是最易读、最简洁且最快捷的方法。根据这篇推文,下面列出了可用的方法(由快到慢):
- f {s}{t} # Fast!
- s + + t
- .join((s, t))
- %s %s % (s, t)
- {} {} .format(s, t)
- Template( $s $t ).substitute(ss=s, tt=t) # Slow!
在GitHub上查看rawstrings.py全部代码
本质上,生成器并没有变得更快,因为它在设计上允许延迟计算以节省内存而非节约时间。然而节省的内存也可以加快程序实际运行速度。怎么做?如果有一个很大的数据集且不使用生成器(迭代器),那么数据可能会溢出CPU的L1 cache(1级缓存),这将大大减慢内存的查找速度。
在性能方面,极重要的一点是:CPU可以将正在处理的所有数据尽可能地保存在缓存中。
图源:Unsplash
结语
优化的首要规则就是“不优化”。
若真的有必要优化,那我希望这些技巧会有所帮助。
但是,优化代码时一定要小心,因为优化的结果可能是代码难以阅读进而难以维护,这就得不偿失了。
最后,希望大家能搭上python号火箭,编码越来越快!