面试又被问到一致性 Hash 算法?这样回答秒杀面试官!

开发 前端 算法
当数据量变大,并发量也增加的时候,把全部的缓存数据放在一台机器上就有些吃力了,毕竟一台机器的资源是有限的,通常我们会搭建集群环境,让数据尽量平均的放到每一台 Redis 中,比如我们的集群中有 4 台Redis。

[[284994]]

数据分片

先让我们看一个例子吧

我们经常会用 Redis 做缓存,把一些数据放在上面,以减少数据的压力。

当数据量少,访问压力不大的时候,通常一台Redis就能搞定,为了高可用,弄个主从也就足够了;

当数据量变大,并发量也增加的时候,把全部的缓存数据放在一台机器上就有些吃力了,毕竟一台机器的资源是有限的,通常我们会搭建集群环境,让数据尽量平均的放到每一台 Redis 中,比如我们的集群中有 4 台Redis。

那么如何把数据尽量平均地放到这 4 台Redis中呢?最简单的就是取模算法:

hash( key ) % N,N 为 Redis 的数量,在这里 N = 4 ;

 

看起来非常得美好,因为依靠这样的方法,我们可以让数据平均存储到 4 台 Redis 中,当有新的请求过来的时候,我们也可以定位数据会在哪台 Redis 中,这样可以精确地查询到缓存数据。

02数据分片会遇到的问题

但是 4 台 Redis 不够了,需要再增加 4 台 Redis ;

那么这个求余算法就会变成:hash( key ) % 8 ;

 

那么可以想象一下,当前大部分缓存的位置都会是错误的,极端情况下,就会造成 缓存雪崩。

03一致性 Hash 算法

一致性 Hash 算法可以很好地解决这个问题,它的大概过程是这样的:

把 0 作为起点,2^32-1 作为终点,画一条直线,再把起点和终点重合,直线变成一个圆,方向是顺时针从小到大。0 的右侧第一个点是 1 ,然后是 2 ,以此类推。

对三台服务器的 IP 或其他关键字进行 hash 后对 2^32 取模,这样势必能落在这个圈上的某个位置,记为 Node1、Node2、Node3。

 

然后对数据 key 进行相同的操作,势必也会落在圈上的某个位置;然后顺时针行走,可以找到某一个 Node,这就是这个 key 要储存的服务器。

 

如果增加一台服务器或者删除一台服务器,只会影响 部分数据。

 

但如果节点太少或分布不均匀的时候,容易造成 数据倾斜,也就是大部分数据会集中在某一台服务器上。

 

为了解决数据倾斜问题,一致性 Hash 算法提出了【虚拟节点】,会对每一个服务节点计算多个哈希,然后放到圈上的不同位置。

 

当然我们也可以发现,一致性 Hash 算法,也只是解决大部分数据的问题。

责任编辑:武晓燕 来源: 会点代码的大叔
相关推荐

2024-01-15 10:38:20

多级缓存数据一致性分布式缓存

2024-06-26 11:55:44

2022-03-22 09:54:22

Hash算法

2022-11-10 07:49:09

hash算法代码

2023-01-14 17:36:39

微服务注册中心数据

2016-02-15 10:46:40

JavaHash算法

2021-02-05 08:00:48

哈希算法​机器

2018-08-08 15:51:44

Hash分布式算法

2021-05-19 21:50:46

Hash算法测试

2017-07-25 14:38:56

数据库一致性非锁定读一致性锁定读

2024-04-11 08:01:24

RedisMysql分布式锁

2021-07-27 08:57:10

算法一致性哈希哈希算法

2016-12-19 18:41:09

哈希算法Java数据

2020-03-16 11:55:28

PaxosRaft协议

2019-10-11 23:27:19

分布式一致性算法开发

2020-07-20 08:30:37

算法哈希分布式系统

2021-08-13 07:56:13

Raft算法日志

2022-01-11 17:23:51

算法负载均衡Hash

2022-12-14 08:23:30

2021-10-22 08:37:13

消息不丢失rocketmq消息队列
点赞
收藏

51CTO技术栈公众号