理解网络模型
网络的设计大佬们想出了分层的设计,将各个功能分开,交付给不同的层,这样的好处是便于更新和维护(IPv6的到来并没有使整个网络重新设计),也便于我们的学习和理解.下面是各个版本的网络体系的结构图:
让我们明确下各层的工作职责(以五层协议为例):
- 应用层,该层协议主要负责各个应用程序之间交互的规则.如HTTP,DNS,其交互的数据单元可以称为”报文”.运输层,为应用层提供通用的数据传输服务.为上层跑腿的.TCP,UDP均是运输层协议.
- 网络层,为网络中不同的主机提供通信服务.IP协议工作在该层.
- 数据链路层,负责相邻两点的数据传送.
- 物理层, 传输比特流, 0 或 1. 每一层将数据封装成自己能理解的数据格式,交付给下一层,下一层将收到的作为自己的数据再次添加本层的必要数据,向下交付,直到链路层,传递到目的地后,每层再将该层的必要数据去掉,交付给上层.
如下图:
理解IP协议
在理解了网络模型和各层直接的配合之后,下面进入今天的正题,网际协议(IP).
该节主要理解IP协议给我们提供的功能有哪些,说白了就是它能干嘛.
- 为网络中的主机(PC或路由或网关)提供身份证.
- 定义了网络主机的基本交流方式, 从IP数据报的格式可以看出.
为路由寻址提供方便, 从路由表结构可以看出.
任何一个协议都可以由语法,语义和同步三部分组成.
- 语法,交换信息的格式,对于IP协议,就是IP报文的格式.
- 语义,即需要发出何种控制信息,以及接收到信息后如何响应.
- 同步,对事件顺序的详细说明.
- 也就是定义了使用IP协议进行交流的法则.
IPv4
IPv4是IP协议的第4个版本,就是我们现在使用的.下面从多个方面了解下该版本.
IP地址
网络上的主机都需要一个IP地址,这样才能知道彼此的位置.IPv4地址由32bit构成,常使用点分十进制表示(192.168.1.1).
分类
IP地址的分类就是把所有IP划分为若干类别, 每一类都由固定长度的字段组成.分别为网络号和主机号.下面是各类地址组成示意图:
- A类地址,8位网络号,第一位固定为0,可用的网络号只有126个(2^7-2),网络号从0到127. 减去2是因为:IP地址全为0表示”本网络”,保留; 网络号为127作为软件回环测试使用, 若主机发出目的地为127.0.0.1的数据时,该数据不会向任何网络上的主机发送.也就是说127开头的地址不能使用. 对于A类地址中的每一个网络号,对应的主机号有(2^24-2)个: 主机号全0表示,其网络号对应的网络地址, 全1表示所有主机的意思.
- B类地址网络号为16位,但前面2位以固定为1 0.无论怎么取值,无法出现全0或全1的情况.128.0.0.0的网络是不使用的,实际使用的最小B类网络地址为128.1.0.0.所以B类的网络地址有(2^14-1)个.
- C类的地址有24位的网络号,最前面的3位固定为1 1 0.192.0.0.0的网络地址也是不使用的,最小的C类地址为192.0.1.0
总结如下:
分类的好处:
- 方便管理,IP地址管理机构只需管理网络号,剩下的可以由下级管理.
- 路由寻址时根据网络地址转发分组,减小路由表.
数据报格式
先看下IP数据报的基本格式:
可以看到IP数据报包含了首部和数据部分. 其中首部包含固定的20字节和可变的部分. 下面是各部分的解释:
- 版本,占4位,IP协议的版本号,通信双方需要相同.
- 首部长度,占4位, 单位4字节.最大能表示(2^4-1) * 4 = 60字节.当IP分组的首部长度不是4的整数倍时,需要使用填充字段填充.
- 区分服务,占8位, 表示服务类型,未使用.
- 总长度, 占16位,表示首部和数据部分的总长度(单位字节).因此数据报的最大总长度为(2^16-1 = 65535)字节.
- 标识(identification), 占16位.当数据报长度超过下层的MTU时,需要分片, 被分片的数据报的标识一样,这样可以进行重组.
- 标志(Flag), 占3位, 目前只有2位有意义
- 最低位,MF(More Fragment) = 1 表示后面还有分片. MF = 0 表示分片中的最后一个.
- 中间一位,DF(Don’t Fragment),不要分片,只有当DF=0才允许分片.
- 片偏移, 占13位.较长的分组在分片后, 某片在原分组的相对位置.必须是8字节的整数倍。
- 生存时间, 占8位, Time To Live(TTL),开始指生存的秒数,后来变为经过路由的跳数,每经过一个路由,TTL减小1,当为0时,丢弃该数据.显然,最大跳数为255, 为1时就只能在局域网中传播了。
协议, 占8位.支出该数据报的数据是使用何种协议, 以便目的主机IP层知道将数据交付给哪个协议处理. 常用的协议及对应数值:
- 首部校验和, 占16位.数据报的首部校验和,不包括数据部分.
- 源地址, 目的地址, 各占32位
IPV6
IPv6的出现是解决IPv4资源枯竭的问题.其仍然支持无连接的传送, 但传送的是PDU分组,而不是IPv4的数据报.
IP地址
IPv6的地址是128bit,在可预见的未来是够用的.但和IPv4版本并不兼容, 若使用IPv4版本的主机A和使用IPv6版本的主机B之间通信是需要特殊处理的,在后面会介绍方法.
IPv6的地址表示
IPv6的地址采用冒号十六进制记法 , 8组4个16进制数字,中间使用冒号隔开.例如:
6845:8C64:FFFF:FFFF:0:1180:9000:FFFF
- 若一组中全是0,可以省略三个.
- 若存在连续多组0,可以使用冒号取代,但只能压缩一次 FF05:0:0:0:0:0:0:B3 可以压缩为 FF05::B3 1090:0:0:0:8:800:200C:417A 可以压缩为 1090::8:800:200C:417A 全零可记为 ::
- 最后的2组可以使用IPv4的点分十进制表示 0:0:0:0:0:0:128.10.2.1 可表示为 ::128.10.2.1
数据报格式
IPv6数据报由两大部分组成, 基本首部和有效载荷.有效载荷运行有0个或多个扩展首部.
可以看到,IPv6的首部是固定的40字节,和IPv4不同;在组成上也有很大区别,下面看下各部分的意思.
- 版本, 占4位, 协议的版本,通信双方需要相同
- 通信量类, 占8位.区分不同的IPv6的数据报或优先级.
- 流标号, 占20位. IPv6一个新机制就是支持资源预分配, 运行路由把每个数据报与特定的资源分配和联系.IPv6提出流的概念.指互联网上从特定源点到特定终点的一系列数据报(如实时的音频或视频传输), 在这个流经过的路径上路由都保证指明的服务质量.所有属于同一个流的数据报具有相同的流标号.赋值为0即为关闭.
- 有效载荷长度, 占16位.指明除基本首部以外的字节数.最大64KB.
- 下一首部, 占8位.相当于IPv4的协议字段或可选字段.
- 当IPv6没有扩展首部时, 该字段和IPv4的协议字段一样.
- 有扩展首部时,表示第一个扩展首部的类型.
- 跳数限制, 和IPv4的TTL一样
- 源地址,目的地址, 各占128位
从IPv4向IPv6过渡
网络如此庞大,从IPv4向IPv6的变换不可能一蹴而就.若要在两个版本的协议下通信,有下面的2个方法
双协议栈
简单的说就是一个主机能够理解两个版本的内容,这样主机也要有2个版本对应的IP地址.具有双协议栈的主机, 可以通过DNS系统知道目的主机使用的协议版本.
下面是两台使用IPv6的主机通信示意图,它们之间需要通过IPv4网络, 在必要的时候经过双协议栈的主机进行协议的转换,当然转换的时候有些信息可能丢失,这也是不可避免的.
使用隧道技术
隧道技术的原理是,在IPv6的数据需要进入IPv4网络时,将IPv6的数据报(准确的说是PDU)当成IPv4数据报的数据部分,使用IPv4版本传输,在离开IPv4网络时在此组装成IPv6的数据,发往目的地.下面是一个示意图:
结束语
关于IP协议,还有很多可以谈的地方, 这里就不再深入了.读完希望你能有一个”明镜一样”的感觉。