概述
在计算器科学与数学中,一个排序算法(英语:Sorting algorithm)是一种能将一串数据依照特定排序方式进行排列的一种算法。本文将总结几类常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序,分别使用Java代码实现,简要使用图例方式介绍其实现原理。
算法原理及实现
1、冒泡排序
- 原理图
- 理解
通过重复地遍历要排序的列表,比较每对相邻的项目,并在顺序错误的情况下交换它们。
- Java Code
- public class BubbleSort {
- // logic to sort the elements
- public static void bubble_srt(int array[]) {
- int n = array.length;
- int k;
- for (int m = n; m >= 0; m--) {
- for (int i = 0; i < n - 1; i++) {
- k = i + 1;
- if (array[i] > array[k]) {
- swapNumbers(i, k, array);
- }
- }
- printNumbers(array);
- }
- }
- private static void swapNumbers(int i, int j, int[] array) {
- int temp;
- temp = array[i];
- array[i] = array[j];
- array[j] = temp;
- }
- private static void printNumbers(int[] input) {
- for (int i = 0; i < input.length; i++) {
- System.out.print(input[i] + ", ");
- }
- System.out.println("\n");
- }
- public static void main(String[] args) {
- int[] input = { 4, 2, 9, 6, 23, 12, 34, 0, 1 };
- bubble_srt(input);
- }
- }
2、选择排序
- 原理图
- 理解
内部循环查找下一个最小(或最大)值,外部循环将该值放入其适当的位置。
- Java Code
- public class SelectionSort {
- public static int[] doSelectionSort(int[] arr){
- for (int i = 0; i < arr.length - 1; i++)
- {
- int index = i;
- for (int j = i + 1; j < arr.length; j++)
- if (arr[j] < arr[index])
- index = j;
- int smallerNumber = arr[index];
- arr[index] = arr[i];
- arr[i] = smallerNumber;
- }
- return arr;
- }
- public static void main(String a[]){
- int[] arr1 = {10,34,2,56,7,67,88,42};
- int[] arr2 = doSelectionSort(arr1);
- for(int i:arr2){
- System.out.print(i);
- System.out.print(", ");
- }
- }
- }
冒泡排序和选择排序的区别
1、冒泡排序是比较相邻位置的两个数,而选择排序是按顺序比较,找最大值或者最小值;
2、冒泡排序每一轮比较后,位置不对都需要换位置,选择排序每一轮比较都只需要换一次位置;
3、冒泡排序是通过数去找位置,选择排序是给定位置去找数。
3、插入排序
- 原理图
- 理解
每一步将一个待排序的记录,插入到前面已经排好序的有序序列中去,直到插完所有元素为止。
- Java Code
- public class InsertionSort {
- public static void main(String a[]){
- int[] arr1 = {10,34,2,56,7,67,88,42};
- int[] arr2 = doInsertionSort(arr1);
- for(int i:arr2){
- System.out.print(i);
- System.out.print(", ");
- }
- }
- public static int[] doInsertionSort(int[] input){
- int temp;
- for (int i = 1; i < input.length; i++) {
- for(int j = i ; j > 0 ; j--){
- if(input[j] < input[j-1]){
- temp = input[j];
- input[j] = input[j-1];
- input[j-1] = temp;
- }
- }
- }
- return input;
- }
- }
4、快速排序
- 原理图
- 理解
将原问题分解为若干个规模更小,但结构与原问题相似的子问题,递归地解这些子问题,然后将这些子问题的解组合为原问题的解。
- public class QuickSort {
- private int array[];
- private int length;
- public void sort(int[] inputArr) {
- if (inputArr == null || inputArr.length == 0) {
- return;
- }
- this.array = inputArr;
- length = inputArr.length;
- quickSort(0, length - 1);
- }
- private void quickSort(int lowerIndex, int higherIndex) {
- int i = lowerIndex;
- int j = higherIndex;
- // calculate pivot number, I am taking pivot as middle index number
- int pivot = array[lowerIndex+(higherIndex-lowerIndex)/2];
- // Divide into two arrays
- while (i <= j) {
- /**
- * In each iteration, we will identify a number from left side which
- * is greater then the pivot value, and also we will identify a number
- * from right side which is less then the pivot value. Once the search
- * is done, then we exchange both numbers.
- */
- while (array[i] < pivot) {
- i++;
- }
- while (array[j] > pivot) {
- j--;
- }
- if (i <= j) {
- exchangeNumbers(i, j);
- //move index to next position on both sides
- i++;
- j--;
- }
- }
- // call quickSort() method recursively
- if (lowerIndex < j)
- quickSort(lowerIndex, j);
- if (i < higherIndex)
- quickSort(i, higherIndex);
- }
- private void exchangeNumbers(int i, int j) {
- int temp = array[i];
- array[i] = array[j];
- array[j] = temp;
- }
- public static void main(String a[]){
- MyQuickSort sorter = new MyQuickSort();
- int[] input = {24,2,45,20,56,75,2,56,99,53,12};
- sorter.sort(input);
- for(int i:input){
- System.out.print(i);
- System.out.print(" ");
- }
- }
- }
5、归并排序
- 原理图
- 理解
将待排序的数列分成若干个长度为1的子数列,然后将这些数列两两合并;得到若干个长度为2的有序数列,再将这些数列两两合并;得到若干个长度为4的有序数列,再将它们两两合并;直接合并成一个数列为止。
- Java Code
- public class MergeSort {
- private int[] array;
- private int[] tempMergArr;
- private int length;
- public static void main(String a[]){
- int[] inputArr = {45,23,11,89,77,98,4,28,65,43};
- MyMergeSort mms = new MyMergeSort();
- mms.sort(inputArr);
- for(int i:inputArr){
- System.out.print(i);
- System.out.print(" ");
- }
- }
- public void sort(int inputArr[]) {
- this.array = inputArr;
- this.length = inputArr.length;
- this.tempMergArr = new int[length];
- doMergeSort(0, length - 1);
- }
- private void doMergeSort(int lowerIndex, int higherIndex) {
- if (lowerIndex < higherIndex) {
- int middle = lowerIndex + (higherIndex - lowerIndex) / 2;
- // Below step sorts the left side of the array
- doMergeSort(lowerIndex, middle);
- // Below step sorts the right side of the array
- doMergeSort(middle + 1, higherIndex);
- // Now merge both sides
- mergeParts(lowerIndex, middle, higherIndex);
- }
- }
- private void mergeParts(int lowerIndex, int middle, int higherIndex) {
- for (int i = lowerIndex; i <= higherIndex; i++) {
- tempMergArr[i] = array[i];
- }
- int i = lowerIndex;
- int j = middle + 1;
- int k = lowerIndex;
- while (i <= middle && j <= higherIndex) {
- if (tempMergArr[i] <= tempMergArr[j]) {
- array[k] = tempMergArr[i];
- i++;
- } else {
- array[k] = tempMergArr[j];
- j++;
- }
- k++;
- }
- while (i <= middle) {
- array[k] = tempMergArr[i];
- k++;
- i++;
- }
- }
- }