微软开源可解释机器学习工具包lnterpretML

新闻 机器学习
人类创造出人工智能,并且被人工智能影响着自己的生活。如果人工智能的行为具有可理解性,那么人类可以更进一步地利用人工智能。

 [[264976]]

【 图片来源:Microsoft Research Blog  所有者:Microsoft Research Blog 】

人类创造出人工智能,并且被人工智能影响着自己的生活。如果人工智能的行为具有可理解性,那么人类可以更进一步地利用人工智能。近期,微软研究院就机器学习的可理解性发表了相关文章,雷锋网全文编译如下。

当人工智能系统能够影响人类生活时,人们对它的行为理解是非常重要的。通过理解人工智能系统的行为,数据科学家能够适当地调试它们的模型。如果能够解释模型的行为原理,设计师们就能够向最终用户传递这些信息。如果医生、法官或者其它决策制定者相信这个强化智能系统的模型,那他们就可以作出更好的决策。更广泛的讲,随着模型的理解更加全面,最终用户可能会更快接受由人工智能驱动的产品和解决方案,同时,也可能更容易满足监管机构日益增长的需求。

事实上,要实现可理解性是复杂的,它高度依赖许多变量和人为因素,排除了任何“一刀切”的方法。可理解性是一个前沿的、跨学科的研究领域,它建立在机器学习、心理、人机交互以及设计的思想上。

微软研究院这些年一直致力于研究如何创造出具有可理解性的人工智能,如今,如今微软在MIT开源协议下开源了lnterpretML软件工具包,开源地址是 https://github.com/Microsoft/interpret,它将使开发人员能够尝试各种方法去解释模型和系统。InterpretML能够执行许多可理解的模型,包括可解释的Boosting Machine(相对于一般的加性模型做了改进),以及为黑箱模型的行为或者它们的个别预测生成解释的几种方法。

通过一些简单的方式去评估可理解性方法,开发人员就能够比较不同方法产生的解释,从而去选择那些***他们需求的方法。例如,通过检查方法之间的一致性,这样一来,比较法就能够帮助数据科学家去了解在多大程度上相信那些解释。

微软正期待与开源社区合作,继续开发InterpretML,开源地址是https://github.com/Microsoft/interpret

本文转自雷锋网,如需转载请至雷锋网官网申请授权。

责任编辑:张燕妮 来源: 雷锋网
相关推荐

2015-11-11 14:01:26

微软开源分布式

2016-01-27 13:34:07

开源语音识别CNTK

2020-08-19 09:20:00

机器学习人工智能Python

2019-08-29 18:07:51

机器学习人工智能

2020-08-25 10:30:59

TensorFlow数据机器学习

2023-09-20 11:42:44

人工智能AI

2024-11-04 14:33:04

机器学习SHAP黑盒模型

2021-12-30 20:20:46

机器学习销售语言

2020-12-21 15:11:33

机器学习工具开源

2018-05-03 09:03:16

微软工具包Windows

2020-06-18 15:45:54

AWS机器学习人工智能

2016-02-16 13:21:33

2022-09-15 14:51:05

Python机器学习人工智能

2021-01-08 10:47:07

机器学习模型算法

2009-08-11 09:30:37

Windows 7开发

2009-06-04 14:18:44

Windows Mob工具包

2018-06-17 08:13:02

微软工具包Visual Stud

2011-05-10 09:56:11

Windows AzuiOSWindows Pho

2017-08-31 16:26:43

微软

2009-08-28 09:59:05

BingiPhone微软
点赞
收藏

51CTO技术栈公众号