10招!看骨灰级Pythoner如何玩转Python

开发 后端
pandas是基于numpy构建的,使数据分析工作变得更快更简单的高级数据结构和操作工具。本文为大家带来10个玩转Python的小技巧,学会了分分钟通关变大神!

pandas是基于numpy构建的,使数据分析工作变得更快更简单的高级数据结构和操作工具。本文为大家带来10个玩转Python的小技巧,学会了分分钟通关变大神!

[[262325]]

1. read_csv

每个人都知道这个命令。但如果你要读取很大的数据,尝试添加这个参数:nrows = 5,以便在实际加载整个表之前仅读取表的一小部分。然后你可以通过选择错误的分隔符来避免错误(它不一定总是以逗号分隔)。

(或者,你可以在linux中使用'head'命令来检查任何文本文件中的前5行,例如:head -c 5 data.txt)

然后,你可以使用df.columns.tolist()来提取列表中的所有列,然后添加usecols = ['c1','c2',...]参数以加载所需的列。此外,如果你知道几个特定列的数据类型,则可以添加参数dtype = {'c1':str,'c2':int,...},以便数据加载得更快。此参数还有另一个优点,如果你有一个同时包含字符串和数字的列,那么将其类型声明为字符串是一个好选择,这样就可以在尝试使用此列作为键去合并表时不会出错。

2. select_dtypes

如果必须在Python中进行数据预处理,那么这个命令可以节约一些时间。读取表后,每列的默认数据类型可以是bool,int64,float64,object,category,timedelta64或datetime64。你可以先查看

  1. df.dtypes.value_counts() 

命令分发的结果以了解数据帧的所有可能数据类型,然后执行

  1. df.select_dtypes(include = ['float64','int64']) 

选择仅具有数字特征的子数据帧。

3. Copy

这是一个重要的命令。如果执行以下命令:

  1. import pandas as pd 
  2. df1 = pd.DataFrame({ ‘a’:[0,0,0], ‘b’: [1,1,1]}) 
  3. df2 = df1 
  4. df2[‘a’] = df2[‘a’] + 1 
  5. df1.head() 

你会发现df1已经改变了。这是因为df2 = df1没有复制df1的值并将其分配给df2,而是设置指向df1的指针。因此,df2的任何变化都会导致df1发生变化 要解决这个问题,你可以:

  1. df2   
  2. df1.copy() 
  3. br 

或者

  1. from copy import deepcopy 
  2. df2 = deepcopy(df1) 

4. Map

这是一个可以进行简单数据转换的命令。首先定义一个字典,其中'keys'是旧值,'values'是新值。

  1. level_map = {1: ‘high’, 2: ‘medium’, 3: ‘low’} 
  2. df[‘c_level’] = df[‘c’].map(level_map) 

举几个例子:True,False为1,0(用于建模); 定义水平; 用户定义的词法编码。

5. apply or not apply?

如果我们想创建一个新的列,并将其他列作为输入,那么apply函数有时非常有用。

  1. def rule(x, y): 
  2.     if x == ‘high’ and y > 10: 
  3.          return 1 
  4.     else: 
  5.          return 0 
  6. df = pd.DataFrame({ 'c1':[ 'high' ,'high', 'low', 'low'], 'c2': [0, 23, 17, 4]}) 
  7. df['new'] = df.apply(lambda x: rule(x['c1'], x['c2']), axis =  1
  8. df.head() 

在上面的代码中,我们定义了一个带有两个输入变量的函数,并使用apply函数将其应用于列'c1'和'c2'。

但“apply函数”的问题是它有时太慢了。 如果你想计算两列“c1”和“c2”的***值,你可以:

  1. df[‘maximum’] = df.apply(lambda x: max(x[‘c1’], x[‘c2’]), axis = 1

但你会发现它比这个命令慢得多:

  1. df[‘maximum’] = df[[‘c1’,’c2']].max(axis =1

注意:如果可以使用其他内置函数完成相同的工作(它们通常更快),请不要使用apply。例如,如果要将列'c'舍入为整数,请执行round(df ['c'],0)而非使用apply函数:

  1. df.apply(lambda x: round(x['c'], 0), axis = 1

6. value counts

这是一个检查值分布的命令。例如,如果你想检查“c”列中每个值的可能值和频率,可以执行以下操作

  1. df[‘c’].value_counts() 

它有一些有用的技巧/参数:

  1. A. normalize = True:如果你要检查频率而不是计数。 
  2. B. dropna = False:如果你要统计数据中包含的缺失值。 
  3. C. df['c'].value_counts().reset_index():  如果你想将stats表转换成pandas数据帧并进行操作。 
  4. D. df['c'].value_counts().reset_index().sort_values(by='index') : 显示按值而不是按计数排序的统计数据。 

7. 缺失值的数量

构建模型时,你可能希望排除具有很多缺失值或全是缺失值的行。你可以使用.isnull()和.sum()来计算指定列中缺失值的数量。

  1. import pandas as pd 
  2. import numpy as np 
  3. df = pd.DataFrame({ ‘id’: [1,2,3], ‘c1’:[0,0,np.nan], ‘c2’: [np.nan,1,1]}) 
  4. dfdf = df[[‘id’, ‘c1’, ‘c2’]] 
  5. df[‘num_nulls’] = df[[‘c1’, ‘c2’]].isnull().sum(axis=1
  6. df.head() 

8. 选择具有特定ID的行

在SQL中,我们可以使用SELECT * FROM ... WHERE ID('A001','C022',...)来获取具有特定ID的记录。如果想用Pandas做同样的事情,你可以

  1. dfdf_filter = df[‘ID’].isin([‘A001’,‘C022’,...]) 
  2. df[df_filter] 

9. Percentile groups

你有一个数字列,并希望将该列中的值分类为组,例如将列的前5%,分为组1,前5-20%分为组2,前20%-50%分为组3,***50%分为组4。当然,你可以用pandas.cut来做,但这里提供另一个选择:

  1. import numpy as np 
  2. cut_points = [np.percentile(df[‘c’], i) for i in [50, 80, 95]] 
  3. df[‘group’] = 1 
  4. for i in range(3): 
  5.     df[‘group’] = df[‘group’] + (df[‘c’] < cut_points[i]) 
  6. # or <= cut_points[i] 

这个指令使计算机运行的非常快(没有使用应用功能)。

10. to_csv

这也是每个人都会使用的命令。这里指出两个技巧。 ***个是

  1. print(df[:5].to_csv()) 

你可以使用此命令准确地打印出写入文件的前五行数据。

另一个技巧是处理混合在一起的整数和缺失值。如果列同时包含缺失值和整数,则数据类型仍将是float而不是int。导出表时,可以添加float_format ='%。0f'将所有浮点数舍入为整数。如果只想要所有列的整数输出,请使用此技巧,你将摆脱所有令人苦恼的'.0'。

责任编辑:赵宁宁 来源: 读芯术
相关推荐

2023-12-08 12:04:32

命令Linux骨灰级

2022-08-30 11:53:36

Kubernetes网络排查

2019-10-28 09:11:53

MySQL性能优化

2011-04-28 13:46:28

Skulltrail平台工作站

2013-02-20 15:10:56

2023-08-25 13:32:05

COBOLJavaAI

2012-12-25 09:49:41

FIT冯华君果粉

2016-08-15 23:03:09

2012-06-29 15:03:23

傲游浏览器

2015-08-12 09:46:37

OpenStackEasyStack联想

2018-05-12 16:26:17

互联网VPC子网

2020-09-01 07:49:14

JVM流量系统

2012-06-29 11:09:09

2013-11-21 07:22:30

智慧城市

2019-05-13 09:11:41

加密解密Python攻击

2014-06-30 13:34:57

2016-02-22 11:39:27

亚马逊AWS大数据

2017-02-28 15:08:08

架构微服务数据库

2015-08-03 14:02:37

Windows 10升级

2013-03-13 09:56:10

点赞
收藏

51CTO技术栈公众号