就像大多数软件应用程序的开发一样,开发人员也在使用多种语言来编写人工智能项目,但是现在还没有任何一种***的编程语言是可以完全速配人工智能项目的。
编程语言的选择往往取决于对人工智能应用程序的期望功能。关于***人工智能编程语言的争论从未停止,所以今天Tesra超算网络就来比较5种人工智能项目最常用的编程语言,并列出它们的优缺点。一起来看看吧!
Python
由于其语法,简单性和多功能性,Python成为开发人员最喜欢的人工智能开发编程语言。Python最打动人心的地方之一就是便携性,它可以在Linux、Windows、Mac OS和UNIX等平台上使用。允许用户创建交互式的、解释的、模块化的、动态的、可移植的和高级的代码。
另外,Python是一种多范式编程语言,支持面向对象,过程式和功能式编程风格。由于其简单的函数库和理想的结构,Python支持神经网络和NLP解决方案的开发。
优点
Python有丰富多样的库和工具。
支持算法测试,而无需实现它们。
Python的面向对象设计提高了程序员的生产力。
与Java和C ++相比,Python的开发速度更快。
缺点
习惯使用Python来编写人工智能程序的程序员很难适应其它语言的语法。
与c++和Java不同的是,Python需要在解释器的帮助下工作,这就会拖慢在AI开发中的编译和执行速度。
不适合移动计算。
C ++
优点
c++是最快的计算机语言,如果你的人工智能项目对于时间特别敏感,那么C++是很好的选择,它提供更快的执行时间和更快的响应时间(这也是为什么它经常应用于搜索引擎和游戏)。此外,c++允许广泛使用算法,并且在使用统计人工智能技术方面是有效的。另一个重要的因素是c++支持在开发中重用代码。
C ++适用于机器学习和神经网络。
缺点
多任务处理不佳; C ++仅适用于实现特定系统或算法的核心或基础。
它遵循自下而上的方法,因此非常复杂。
另外想要成为一个优秀的、有能力程序员的话,其实作为一个开发者或者编程学习者,有一个学习的氛围跟一个交流圈子特别重要!这里我要推荐一个C语言c+交流Q群7-4-1-8-1-8-6-5-2,不管你是大牛还是小白,大家都一起成长进步。
Java
Java也是一种多范式语言,遵循面向对象的原则和一次写入读取/随处运行(WORA)的原则。它是一种AI编程语言,可以在任何支持它的平台上运行,而无需重新编译。
在各种项目的开发中,Java都是常用语言之一,它不仅适用于NLP和搜索算法,还适用于神经网络。
Lisp
优点
Lisp是一门计算机编程语言,是继Fortran之后的第二古老的编程语言。随着时间的推移,LISP逐渐发展成为一种强大的、动态的编码语言。
有人认为Lisp是***的人工智能编程语言,因为它为开发人员提供了自由。在人工智能中使用Lisp,因其灵活性可以快速进行原型设计和实验,当然这也反过来促进Lisp在AI开发中的发展,例如,Lisp有一个独特的宏系统,有助于开发和实现不同级别的智能。
与大多数人工智能编程语言不同,Lisp在解决特定问题时更加高效,因为它适应了开发人员编写解决方案的需求,非常适合于归纳逻辑项目和机器学习。
缺点
很少有开发人员熟悉Lisp编程。
作为一种较古老的编程语言,Lisp需要配置新的软件和硬件来适应它的使用。
Prolog
Prolog也是古老的编程语言之一(可能有些伙伴没有接触过),与Lisp一样,它也是人工智能项目开发的常用语言,拥有灵活框架的机制,它是一种基于规则和声明性的语言,包含了决定其人工智能编码语言的事实和规则。
Prolog支持基本的机制,例如模式匹配、基于树的数据结构和人工智能编程的自动回溯。除了在人工智能项目中广泛使用外,Prolog还用于创建医疗系统。
这五种编程语言,学会一种在人工智能时代也是不会亏的哦!大家有什么其他的想法可以在评论区吐槽哦!