干货 :送你12个关于数据科学学习的关键提示(附链接)

大数据
根据Glassdoor在美国区的统计,“数据科学家”排名为2019年最诱人的工作。平均基础工资为$108k,工作满意度为4.3–5★,加上被预测有大量空缺,这个结果一点都不令人吃惊。

小结: 数据科学家需要强大的数学和编码能力,但沟通能力和其它软技能也是走向成功不可缺少的基本功。

干货 :送你12个关于数据科学学习的关键提示(附链接)

根据Glassdoor在美国区的统计,“数据科学家”排名为2019年最诱人的工作。平均基础工资为$108k,工作满意度为4.3–5★,加上被预测有大量空缺,这个结果一点都不令人吃惊。

问题是,一个人该如何修炼才能走上正轨并获得胜任这份工作的资格?

为了找到答案,我们总结了大量文章里的建议,很多可以归纳为编码与数学上的硬技能(hard skills)。但强大的计算能力并不是全部。一名优秀的数据科学家仍需要和相关业务人员进行有效沟通,这里便需要一些软技能(soft skills)。

干货 :送你12个关于数据科学学习的关键提示(附链接)

铸造你的教育地基:3个要点

Drace Zhan作为 NYC Data Science Academy 的数据科学家,强调了教育基础的必要性,包括编码基础和数学能力:

  • NYC Data Science Academy:https://nycdatascience.com/

R/Python + SQL。如果你没有编码能力,那你就需要大量的网络等其它领域的力量来补充这个缺陷。我见到过一些数据科学家,有的数学能力比较薄弱,或者对相关领域欠缺经验,但他们总有很强的编码能力。Python是很理想,R正在变得有点落后,***两样武器都带上。SQL对于数据分析师来说同样极其重要。

  • R/Python + SQL:https://www.techopedia.com/definition/3533/python

强大的数学能力。对一些常用的理论有着较好的理解:generalized linear models(广义线性模型),decision tree(决策树),K-means(聚类分析)和statistical tests(假设检验)。这好过手握大量模型甚至专业模型如递归神经网络(RNN),却仅仅是浅尝辄止。

  • decision tree:https://www.techopedia.com/definition/28634/decision-tree
  • K-means:https://www.techopedia.com/definition/32057/k-means-clustering

这些都是需要培养的核心技能,尽管一些专家还加入了其它东西。例如,一份 KDnuggests 清单包含了编码成分,Zhan在此基础上还加入了一些其他有用的东西,包括Hadoop平台,Apache Spark,数据可视化,非结构化数据,机器学习和AI。

  • Apache Spark:https://www.techopedia.com/definition/30113/apache-spark

但如果我们从一份Kaggle调研中寻求线索,关于“那些在实际生活中被使用的最普遍的工具”,我们会有不同的发现。下面这张图是名列前15的硬技能。

Python,R和SQL排在前三,第四名是 Jupyter notebooks,接下来是 TensorFlow,Amazon Web Services,Unix shell,Tableau,C/C++,NoSQL,MATLAB/Octave和Java,都排在Hadoop和Spark前面。颇让人意外的是,Microsoft’s Excel Data Mining也被列进来了。

  • TensorFlow:https://www.techopedia.com/definition/32862/tensorflow
  • Amazon Web Services:https://www.techopedia.com/definition/26426/amazon-web-services-aws
  • Unix:https://www.techopedia.com/definition/4637/unix
  • C++:https://www.techopedia.com/definition/26184/c-programming-language
  • NoSQL:https://www.techopedia.com/definition/27689/nosql-database
  • Java:https://www.techopedia.com/definition/3927/java

干货 :送你12个关于数据科学学习的关键提示(附链接)

图片出自 Kaggle
  • https://www.kaggle.com/surveys/2017

在KDnuggests清单中也包括了关于正规教育的建议。大多数据科学家都拥有高学历,46%是博士,88%的人拥有至少硕士学位。他们的本科学位通常是相关领域。大约1/3是数学和统计学,这也是***的职业轨迹。接下来***的是计算机科学学位,占有19%,工程学16%。当然专门针对数据科学的技术工具通常不会设在大学课程中,但是可以通过专门的训练营或在线课程习得。

课程之外:2个要点

Hank Yun是威尔康奈尔医学院肺科的一名助理研究员,同时也是NYC数据科学学院的学生。他建议有抱负的数据科学家围绕他们将要从事的工作进行计划,并找到一位导师。

  • Hank Yun:https://medium.com/@jhaseon

他说:“不要犯我曾经犯过的错误。那时我对自己说,我知道数据科学,因为我参加了课程并获得了证书。”这确实是个不错的开始,但当你开始学的时候,脑海中要有一个计划。然后在该领域中找到一名导师,并立刻开始一个令你充满激情的项目。

当你还是个新手,你不知道你不知道什么。所以如果有个人指导你前行,告诉你,什么是对于现在的你最重要的,什么不是,这将很有帮助。别把时间扔在学习那些***根本无法施展的东西!

知道从你的工具包里取出哪样工具:保持领先的要点

由于数据科学工具的排名不尽相同,有人可能会困惑,到底该把精力集中在哪些上面。Celeste Fralick是McAfee软件安全公司的***数据科学家。他在CIO article上强调了这个问题:“一名数据科学家需要处在调查曲线的前端,但别忘了去明白,什么技术该什么时候用。” 这句话意思是,别被新鲜与性感的外表蛊惑,而实际问题需要更多工作。意识到对于生态系统的计算成本,可解释性,延迟,带宽,和其它系统边界条件,还有客户的到期时间,它本身就能帮助数据科学家知道,使用什么技术最合适。

  • CIO article:https://www.cio.com/article/3263790/data-science/the-essential-skills-and-traits-of-an-expert-data-scientist.html

基本软技能:另外6个要点

Fralick提到了数据科学工作需要的非技术性技能。这也是为什么KDnuggests清单包括了这4项:求知欲,团队合作,沟通技巧和商业头脑。Zhan给列出的清单中也包含了一些关键的软技能,如 “有效沟通能力”,“领域经验” 与上面的 “商业头脑” 类似。总之,都是指将数据科学实际应用到商业中。

Olivia Parr-Rud提供了她自己的想法,又加入了另外2项软技能:创新,勇于坚持。她说:“我认为数据科学是科学也是艺术。它需要利用大脑两侧的力量。很多人谈及数据科学,说它主要使用左脑。但我发现,想要成功,数据科学家就得充分调用他们的全脑。”

她解释道,在该领域前行,不仅需要技术能力,还要有创造性和领导性远见。

大多数左脑/线性任务可以被自动化或外包。为了提供身为一名数据科学家的竞争优势,我们必须能识别大量信息中的模式(patterns)和综合性(synthesize),也就要用到左右脑。我们必须是有创造力的思考者。很多优秀的结论都是来自于左右脑的协同工作。

她还强调为什么清晰地表达远见是基本的:

  • “作为数据科学家,我们的目标是帮助客户增长利润。大多数主管不理解我们是做什么的,我们是如何去做的。所以我们需要像***一样去思考,以股东们可以理解和信任的方式,表达我们的发现与建议。”

总结

这个提示单里包含大量地技术工具,技能,和能力,还有可量化的品质,像创造力,领导力。数据科学不仅仅是个数字游戏。数据科学家也不是在虚空中建模,而是要能提出实用的,能解决商业中实际问题的灼见。那些可以在该领域中获得成功的人,不仅仅精通技术,还能理解工作中团队各成员的需求。

译者简介:国相洁,马德里自治大学本科,经济与金融专业。从数据分析师起步,梦想成为一名优秀的数据科学家。希望在成长的路上,结交志趣相投的朋友,不负青春。

责任编辑:未丽燕 来源: Artinspiring/Dreamstime.com
相关推荐

2019-01-28 06:13:11

数据工程师数据科学家数据分析

2016-12-02 20:27:27

Yelp数据可视化机器学习算法

2020-07-06 09:57:57

编程语言数据Python

2019-08-19 09:31:47

数据机器学习统计学习

2024-01-03 09:22:19

2019-12-13 07:58:34

数据科学数据科学家统计

2018-08-06 13:46:07

编程语言Python数据科学库

2019-07-31 15:14:40

Python数据科学可视化

2023-07-05 10:03:21

2019-08-27 11:15:20

机器人人工智能编程

2019-11-08 10:26:59

云计算数据中心IT

2013-12-16 14:51:09

大数据

2022-06-13 14:36:20

元宇宙虚拟现实科技

2012-06-28 15:57:08

Hadoop

2022-11-04 15:56:41

2016-08-31 07:30:03

数据科学机器学习API

2017-02-07 14:40:52

2020-07-22 11:21:05

数据科学大数据分析大数据

2013-12-13 09:30:45

大数据R语言物联网

2021-09-27 10:07:39

Python 开发编程语言
点赞
收藏

51CTO技术栈公众号