新的PyTorch图神经网络库,快了14倍:LeCun盛赞,GitHub 2000星

新闻 深度学习
当科学家们发现,图神经网络 (GNN) 能搞定传统CNN处理不了的非欧数据,从前深度学习解不开的许多问题都找到了钥匙。

 [[259612]]

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

“CNN已老,GNN当立!”

当科学家们发现,图神经网络 (GNN) 能搞定传统CNN处理不了的非欧数据,从前深度学习解不开的许多问题都找到了钥匙。

如今,有个图网络PyTorch库,已在GitHub摘下2000多星,还被CNN的爸爸Yann LeCun翻了牌:

它叫PyTorch Geometric,简称PyG,聚集了26项图网络研究的代码实现。

这个库还很,比起前辈DGL图网络库,PyG***可以达到它的15倍速度。

应有尽有的库

要跑结构不规则的数据,就用PyG吧。不管是图形 (Graphs),点云 (Point Clouds) 还是流形(Manifolds) 。

 

△ 右边是不规则的,非欧空间

这是一个丰盛的库:许多模型的PyTorch实现,各种有用的转换 (Transforms) ,以及大量常见的benchmark数据集,应有尽有。

说到实现,包括Kipf等人的图卷积网络 (GCN) 和Bengio实验室的图注意力网络 (GAT) 在内,2017-2019年各大顶会的 (至少) 26项图网络研究,这里都能找到快速实现。

到底能多快?PyG的两位作者用英伟达GTX 1080Ti做了实验。

对手DGL,也是图网络库:

在四个数据集里,PyG全部比DGL跑得快。最悬殊的一场比赛,是在Cora数据集上运行GAT模型:跑200个epoch,对手耗时33.4秒,PyG只要2.2秒,相当于对方速度的15倍。

每个算法的实现,都支持了CPU计算和GPU计算。

食用方法

库的作者,是两位德国少年,来自多特蒙德工业大学。

[[259614]]

△ 其中一位

他们说,有了PyG,做起图网络就像一阵微风。

你看,实现一个边缘卷积层 (Edge Convolution Layer) 只要这样而已:

  1.  1import torch 
  2.  2from torch.nn import Sequential as Seq, Linear as Lin, ReLU 
  3.  3from torch_geometric.nn import MessagePassing 
  4.  4 
  5.  5class EdgeConv(MessagePassing): 
  6.  6 def __init__(self, F_in, F_out): 
  7.  7 super(EdgeConv, self).__init__() 
  8.  8 self.mlp = Seq(Lin(2 * F_in, F_out), ReLU(), Lin(F_out, F_out)) 
  9.  9 
  10. 10 def forward(self, x, edge_index): 
  11. 11 # x has shape [N, F_in] 
  12. 12 # edge_index has shape [2, E] 
  13. 13 return self.propagate(aggr='max', edge_index=edge_index, x=x) # shape [N, F_out] 
  14. 14 
  15. 15 def message(self, x_i, x_j): 
  16. 16 # x_i has shape [E, F_in] 
  17. 17 # x_j has shape [E, F_in] 
  18. 18 edge_features = torch.cat([x_i, x_j - x_i], dim=1# shape [E, 2 * F_in] 
  19. 19 return self.mlp(edge_features) # shape [E, F_out] 

安装之前确认一下,至少要有PyTorch 1.0.0;再确认一下cuda/bin在$PATH里,cuda/include在$CPATH里:

  1. 1$ python -c "import torch; print(torch.__version__)" 
  2. 2>>> 1.0.0 
  3. 3 
  4. 4$ echo $PATH 
  5. 5>>> /usr/local/cuda/bin:... 
  6. 6 
  7. 7$ echo $CPATH 
  8. 8>>> /usr/local/cuda/include:... 

然后,就开始各种pip install吧。

PyG项目传送门:

https://github.com/rusty1s/pytorch_geometric

PyG主页传送门:

https://rusty1s.github.io/pytorch_geometric/build/html/index.html

PyG论文传送门:

https://arxiv.org/pdf/1903.02428.pdf

责任编辑:张燕妮 来源: 量子位
相关推荐

2022-04-26 15:24:03

开源框架

2020-03-06 15:25:23

网络神经人工智能数据

2022-07-28 09:00:00

深度学习网络类型架构

2024-04-30 14:54:10

2020-09-09 10:20:48

GraphSAGE神经网络人工智能

2023-05-04 07:39:14

图神经网络GNN

2017-04-26 08:31:10

神经网络自然语言PyTorch

2021-05-11 14:45:11

芯片半导体技术

2020-12-19 11:05:57

循环神经网络PyTorch神经网络

2022-05-07 08:35:58

神经网络深度学习GNN库

2021-12-28 08:48:54

PyTorch神经网络人工智能

2020-09-18 11:40:44

神经网络人工智能PyTorch

2024-11-05 16:19:55

2018-07-03 16:10:04

神经网络生物神经网络人工神经网络

2024-12-12 00:29:03

2020-08-21 13:55:56

微软开源PyTorch

2017-04-18 12:21:01

神经网络深度学习设计模式

2021-01-08 11:23:08

IP核

2022-12-05 10:08:59

2020-08-06 10:11:13

神经网络机器学习算法
点赞
收藏

51CTO技术栈公众号