小伙伴,我又来了,这次我们写的是用python爬虫爬取乌鲁木齐的房产数据并展示在地图上,地图工具我用的是 BDP个人版-免费在线数据分析软件,数据可视化软件 ,这个可以导入csv或者excel数据。
- 首先还是分析思路,爬取网站数据,获取小区名称,地址,价格,经纬度,保存在excel里。再把excel数据上传到BDP网站,生成地图报表
本次我使用的是scrapy框架,可能有点大材小用了,主要是刚学完用这个练练手,再写代码前我还是建议大家先分析网站,分析好数据,再去动手写代码,因为好的分析可以事半功倍,乌鲁木齐楼盘,2017乌鲁木齐新楼盘,乌鲁木齐楼盘信息 - 乌鲁木齐吉屋网 这个网站的数据比较全,每一页获取房产的LIST信息,并且翻页,点进去是详情页,获取房产的详细信息(包含名称,地址,房价,经纬度),再用pipelines保存item到excel里,最后在bdp生成地图报表,废话不多说上代码:
JiwuspiderSpider.py
# -*- coding: utf-8 -*-
from scrapy import Spider,Request
import re
from jiwu.items import JiwuItem
class JiwuspiderSpider(Spider):
name = "jiwuspider"
allowed_domains = ["wlmq.jiwu.com"]
start_urls = ['http://wlmq.jiwu.com/loupan']
def parse(self, response):
"""
解析每一页房屋的list
:param response:
:return:
"""
for url in response.xpath('//a[@class="index_scale"]/@href').extract():
yield Request(url,self.parse_html) # 取list集合中的url 调用详情解析方法
# 如果下一页属性还存在,则把下一页的url获取出来
nextpage = response.xpath('//a[@class="tg-rownum-next index-icon"]/@href').extract_first()
#判断是否为空
if nextpage:
yield Request(nextpage,self.parse) #回调自己继续解析
def parse_html(self,response):
"""
解析每一个房产信息的详情页面,生成item
:param response:
:return:
"""
pattern = re.compile('<script type="text/javascript">.*?lng = \'(.*?)\';.*?lat = \'(.*?)\';.*?bname = \'(.*?)\';.*?'
'address = \'(.*?)\';.*?price = \'(.*?)\';',re.S)
item = JiwuItem()
results = re.findall(pattern,response.text)
for result in results:
item['name'] = result[2]
item['address'] = result[3]
# 对价格判断只取数字,如果为空就设置为0
pricestr =result[4]
pattern2 = re.compile('(\d+)')
s = re.findall(pattern2,pricestr)
if len(s) == 0:
item['price'] = 0
else:item['price'] = s[0]
item['lng'] = result[0]
item['lat'] = result[1]
yield item
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
item.py
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class JiwuItem(scrapy.Item):
# define the fields for your item here like:
name = scrapy.Field()
price =scrapy.Field()
address =scrapy.Field()
lng = scrapy.Field()
lat = scrapy.Field()
pass
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
pipelines.py 注意此处是吧mongodb的保存方法注释了,可以自选选择保存方式
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo
from scrapy.conf import settings
from openpyxl import workbook
class JiwuPipeline(object):
wb = workbook.Workbook()
ws = wb.active
ws.append(['小区名称', '地址', '价格', '经度', '纬度'])
def __init__(self):
# 获取数据库连接信息
host = settings['MONGODB_URL']
port = settings['MONGODB_PORT']
dbname = settings['MONGODB_DBNAME']
client = pymongo.MongoClient(host=host, port=port)
# 定义数据库
db = client[dbname]
self.table = db[settings['MONGODB_TABLE']]
def process_item(self, item, spider):
jiwu = dict(item)
#self.table.insert(jiwu)
line = [item['name'], item['address'], str(item['price']), item['lng'], item['lat']]
self.ws.append(line)
self.wb.save('jiwu.xlsx')
return item
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
最后报表的数据
mongodb数据库
地图报表效果图:https://me.bdp.cn/share/index.html?shareId=sdo_b697418ff7dc4f928bb25e3ac1d52348