重塑数据中心的人工智能

人工智能
随着数据中心的不断发展和人工智能的不断演进,二者之间的相互渗透相互作用也开始不断增强和加强。人工智能在数据中心规划、建设、运营等环节当中发挥的作用也越来越大。

[[253094]]

毫无疑问,人工智能(AI)如今正在渗透到各种技术的各个方面,从癌症的早期发现到理解各国的人类语言,以及在实时高分辨率视频中分辨人脸。大量消费者应用为主流需求、社会认可和人工智能的日益普及提供了动力和资金。现在,人工智能思维系统正在快速地进入企业IT领域。

很多组织的IT团队已经看到人工智能成为许多任务的主流,其中包括网络安全、IT运营、监控、数据分析、业务流程自动化和基础设施配置,以响应缓慢增长的技术劳动力和快速增长的IT工作负载之间日益扩大的差距。

然而,对于数据中心而言,它们仅代表两种主要应用:用于数据中心的人工智能和用于人工智能的数据中心。

用于数据中心的人工智能

如今,智能产品已经通过筛选大量繁杂的操作遥测数据、发现异常、关联事件和确定根本原因来增强IT运营和分析。人们还看到人工智能技术添加到基础设施配置和流程自动化中,如今几乎每周都有新产品推出,并将人工智能带入新的领域。随着人工智能在IT运营中的成熟,它从解释发生了什么、提出建议或识别异常的被动报告者转变为预测失败、自主调整过程的步骤以及自动部署或销毁容量的更加主动的参与者。

但其最大的影响可能是数据中心将人工智能与数据中心信息管理(DCIM)系统结合起来,以提供数据中心的智能运营。2014年,谷歌公司使用DeepMind对其数据中心的风扇、通风和冷却设备进行控制调整,将电力成本降低了40%。例如今年,谷歌公司为冷却系统运营一个自我学习的算法,不是表明各种变化,而是直接自主调整控制,观察结果,通过学习变得更加智能。对于量化结果来说还为时过早,但早期迹象看起来很有希望。

但现在只是才刚开始。这些智能产品将在机房的机架上虚拟地重新定位发热的计算负载,以实现最佳温度控制。其他DCIM供应商也在研究人工智能算法,以根据不断变化的硬件容差、功耗/成本趋势、瞬态工作负载来改变数据中心环境温度。除了监控冷却设备之外,人工智能管理配电系统,其节省数据中心电力成本的潜力同样引人注目。而如果人工智能在全球所有数据中心上扩展应用的话,其影响可能是巨大的。

展望未来,新兴的智能DCIM系统将数据中心物联网传感器数据(如热量、气流、振动,超声波、功耗、水和烟雾检测)整合到基于人工智能的平台中,不仅可以检测异常的数据中心行为,还可以确定问题的根源和原因。很快,这些智能DCIM系统不仅会说明某些事情失败的时间、地点和原因,而且还会在事情出错之前预测性地提醒操作人员,并且在某些情况下,还会自动禁止。

用于人工智能的数据中心

由于人工智能几乎改变了每个数据中心应用程序,它也在重塑软件开发生命周期(SDLC)。传统应用程序通过程序化更改演变为其底层代码库,然后使用严格测试进行验证,并以受控、可管理、可重复方式部署到生产过程中。但是,基于人工智能的应用程序不依赖于代码更改或单向部署。相反,许多人在开发环境中发展更智能模型并将其部署到生产中,而其他人则在生产中进行自我训练,在那里他们从现实世界数据中学习并将这些知识传播回开发环境。这种双向细微差别对数据中心网络拓扑结构具有根本性影响。

无论是嵌入在更加传统的第三方应用程序中还是内部开发的人工智能算法,在对尽可能真实且相关的大量数据进行训练时效果最佳。因此,在许多情况下,实时生产数据最适合训练,但在其他应用中,非生产环境中的外部数据系统,以及由此产生的智能模型被部署到生产中。在这两种情况下,人工智能应用程序不只是从非生产部门应用到生产部门中,还在两者之间应用,而要求环境之间的网络分割变得更具渗透性。

人工智能训练需要大量的计算和大量的数据,数据越多越好。为了满足这种对计算能力的巨大需求,人工智能训练越来越多地发生在以CPU为中心的非CPU服务器上,这些服务器基于GPU、FPGA、定制ASIC或专用的深度学习单元,可提供数量级的性能提升。不幸的是,这些计算系统耗电量大,功率密度高达30-50kW/机架,而且预测下一代计算系统的功率密度将达到惊人的100kW/机架。拥有并运营40多个数据中心的数据中心运营商Flexential公司云计算主管Jason Carolan表示,“如果没有对诸如液体冷却之类的冷却遏制解决方案进行实质性的重新设计,现有的大多数数据中心在规模上根本无法支持这一点。”

除了电源之外,这些超级计算机的运行速度与它们接收的训练数据一样快。结果是对大型、廉价和闪电般快速的近线存储的需求不断增长,触发了更快的控制器、协议(例如,NVMe和NVMe-oF)和存储媒介(例如3D XPoint和3D NAND)的市场竞争。

在许多情况下,基于人工智能的应用程序需要一个非生产训练环境,其计算和存储容量比生产环境更高。这种情况促进新计算和存储平台部署到开发和训练环境中,以及最新的网络、SAN和相关的监控和管理工具的更多改变。这些演进需要对数据中心的服务器和存储拓扑进行彻底的转换。

即将到来的基于人工智能的产品和服务将成为运营、自动化、监控、合规、安全、开发和云集成的分水岭,而这些都将是数据中心大量基础性改变的基础。那些具有远见卓识的数据中心运营商采用支持基于人工智能的应用程序,并通过人工智能进行操作,他们可以应对即将到来的市场风暴。 

责任编辑:庞桂玉 来源: 中国IDC圈
相关推荐

2023-03-30 14:30:25

2023-04-27 09:44:47

人工智能数据中心

2023-12-21 10:49:46

2017-07-26 16:26:47

数据中心人工智能技术

2023-10-09 15:39:28

人工智能数据中心

2018-12-26 10:03:36

数据中心中人工智能机器学习

2021-04-28 14:31:00

人工智能数据中心AI

2018-05-04 07:07:40

工智能AI数据中心

2022-05-31 10:39:53

人工智能数据中心

2019-03-19 12:46:04

人工智能数据中心运维管理

2023-03-24 12:54:11

人工智能数据中心

2023-09-19 14:35:05

2018-09-14 08:38:25

人工智能光纤技术数据中心

2023-05-30 18:39:08

人工智能数据中心

2023-08-24 15:42:20

2020-08-17 10:06:25

自动驾驶人工智能数据中心

2024-03-04 13:02:46

数据中心人工智能

2021-02-21 10:14:59

数据中心人工智能

2024-02-26 11:31:33

人工智能数据中心

2023-06-15 15:24:28

人工智能数据中心综合布线
点赞
收藏

51CTO技术栈公众号