5个步骤开启你的数据科学职业生涯!

大数据
数据科学已经成为21世纪最热门的工作领域,但如何才能成为数据科学家呢? 作为一名有抱负的数据科学家,或是准备从事数据科学工作的学生,你应该做好哪些准备? 需要什么技能?不要担心! 本文将会回答以上所有问题。

本文为刚刚接触数据科学的新人,提出五个职场准备的建议。

数据科学已经成为21世纪最热门的工作领域,但如何才能成为数据科学家呢? 作为一名有抱负的数据科学家,或是准备从事数据科学工作的学生,你应该做好哪些准备? 需要什么技能?不要担心! 本文将会回答以上所有问题,并提供相关的资源链接,帮助你开启新的职业生涯!

数据科学是一个跨学科的领域,这意味着数据科学家要了解多个领域的知识,并成为不同领域的专家。 数据科学家必须在以下方面具备坚实的基础:

  1. 计算机科学
  2. 统计研究(需要扎实的基础)
  3. 线性代数
  4. 数据处理(数据分析的专业知识)
  5. 机器学习
  6. 软件工程
  7. Python编程
  8. R编程
  9. 业务领域知识

为了成为一名高水平的数据科学家,下图是你需要掌握的一些知识领域:

5个步骤开启你的数据科学职业生涯!

除非你像激光束一样,将研究集中在这些领域,否则对上图中的一个或多个主题感到陌生是很正常的。 或者你了解两三个主题,但对其余主题了解甚少。 例如,你可能是一名计算机科学专业的学生,掌握数学知识但不了解统计研究分析所要求的高级统计知识。或者,你可能是一名有一些编程基础的统计学家。

有很多方法可以帮助你开启数据科学的职业生涯。 其中,你必须做的五件事是:

  1. 向具有多年经验的前辈学习Python和R
  2. 在GitHub上构建数据科学作品集
  3. 加入Kaggle并参加数据科学竞赛
  4. 练习面试问题
  5. 做好基本的网络声誉管理,以提升形象

1. 向具有多年行业经验的前辈学习Python和R

行业经验是无可替代的。 比起一位热心的业余爱好者(如在线提供的许多课程),拥有5年以上数据科学行业工作经验的人将是讲师的不二人选。 学习Python和R是一方面,掌握Python和R是完全不同的事情。如果想在这个行业做得好,需要做到掌握技能,而不仅仅是具备基本能力。一定要确保你的讲师具有可靠的行业经验,因为这种经历会帮助你拿到***的数据科学公司的offer。相比于拥有相关专业博士学位的学者,从拥有行业经验的专家那里会学到最多。

2. 在GitHub上构建数据科学作品集

在GitHub上拥有在线作品集(online portfolio)至关重要!

如果你不对学习的内容进行编程练习,也没有将课程应用于实际数据和现实情景,那么再好的培训都是无效的。你需要做数据科学项目,并且尽量使你的项目具有吸引力。

GitHub作品集应该遵循以下准则:

3. 加入Kaggle并参加数据科学竞赛

Kaggle.com就是你的训练场。

如果你准备入手数据科学,立即成为Kaggler吧! 或者,如果你更倾向于开发,请加入TopCoder!(TopCoder也有数据科学发展路径)。 Kaggle是公认的数据科学的发源地,因为Kaggle多年来一直举办数据科学竞赛,并且是国际上所有***数据科学竞赛的集合地。 收到知名公司offer的最简单方法之一就是在Kaggle上获得尽可能高的排名。 更重要的是,你可以将自己的表现与行业中的***竞争对手进行比较。

4. 练习面试问题

现在,很多网站都有数据科学岗位面试中使用的问题集。没有企业会让你死记硬背200个面试问题,但他们确实希望你能够在代码(***是Python)或伪代码中解决基本的数据科学和算法问题。 ***还要了解基本概念,例如交叉验证是什么,维度的诅咒,过拟合的问题以及在实际场景中如何处理它。此外,你还需要能解释主要数据科学算法的内部细节,例如AdaBoost。 线性代数,统计学和一些基本的多变量微积分的知识也可以帮助你在竞争中抢占先机。

5. 管理你的网络声誉

这似乎与数据科学无关,但它是任何求职的基本要求。想想未来的雇主在看到求职者名姓名后的***件事是什么?他会先百度这个名字。当搜索你的名字时,会出现什么内容?你的网络资料能否承受以下考验?

如果有以上这些潜在的问题,你可能需要调整自己的网络个人资料。你可以通过博客文章,成熟的网络评论,甚至为自己创建博客,向世界展现积极的自己。在如今的这个在线、数字、互联的世界,这对于求职者来说至关重要。

人才市场上待挑选的产品

在人才市场上,你试图将自己和你的网络信誉销售给从未见过你的人,他甚至没有听过你的名字。因此,互联网资料将成为关键,以确保你在竞争中抢占先机。目前许多培训网站提供的课程,讲师都是业余爱好者或具有不到2年行业经验的人士。所以,不要满足于低价课程,在互联网上,一分耕耘一分收获。如果这是你理想的职业领域,初期投资肯定会有更多的长期回报。

记得保持终身学习的态度。 机器学习和AI是以惊人速度发展的领域。订阅RSS源和在线资源,让你了解领域的***发展,这是必须要做的事情。随时跟进***的研究最能体现你的卓越追求,这些可以通过Feedly和Inoreader之类的阅读应用程序轻松完成。学习可能是你在大学里做的事情,但掌握是你一生所追求的目标,别轻易放弃。如果你可以按照文中提到的那样来完善自己,你一定可以获得自己理想的工作。***,再次强调,一定要特别注意在GitHub上的数据科学作品集,可以帮助你在竞争中脱颖而出!

译者简介:王雨桐,UIUC统计学在读硕士,本科统计专业,目前专注于Coding技能的提升。理论到应用的转换中,敬畏数据,持续进化。

责任编辑:未丽燕 来源: 数据分析
相关推荐

2009-03-24 09:29:51

职业生涯生活方式创业

2016-03-01 09:27:54

数据科学IT职业薪酬

2020-04-01 11:21:22

数据科学人工智能职业生涯

2010-08-09 14:28:04

职业生涯

2012-07-17 11:13:44

程序员

2019-09-09 10:41:24

网络职业网络工程师网络

2011-05-03 14:32:08

DBA职业生涯

2012-09-18 09:40:24

程序员职场职业

2020-11-05 18:25:48

数据科学职业

2014-10-28 10:09:56

程序员

2017-05-09 16:31:43

云计算职业DevOps

2023-03-22 13:58:59

离职阿里巴巴

2011-05-24 12:57:46

“中国百位明星CIO在

2024-03-15 11:06:56

IT领导者MBA职业发展

2023-08-14 10:48:57

2013-03-26 09:33:08

WebWeb开发

2022-10-19 08:31:29

IT职业部门

2022-10-13 10:32:46

IT专业人员IT职业生涯

2022-04-26 10:44:27

IT专业人员IT职业道路

2021-06-15 14:36:38

程序员职业经历
点赞
收藏

51CTO技术栈公众号