CNN与RNN比较与组合

开发 前端 深度学习
CNN和RNN几乎占据着深度学习的半壁江山,所以本文将着重讲解CNN+RNN的对比,以及各种组合方式。

CNN和RNN几乎占据着深度学习的半壁江山,所以本文将着重讲解CNN+RNN的对比,以及各种组合方式。

一、CNN与RNN对比

1. CNN卷积神经网络与RNN递归神经网络直观图

2. 相同点:

  • 传统神经网络的扩展。
  • 前向计算产生结果,反向计算模型更新。
  • 每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接。

3. 不同点

  • CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算
  • RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出
  •  CNN高级100+深度,RNN深度有限

二、CNN+RNN组合方式

1. CNN 特征提取,用于RNN语句生成图片标注。

CNN+RNN

2. RNN特征提取用于CNN内容分类视频分类。

CNN+RNN

3. CNN特征提取用于对话问答图片问答。

三、具体应用

1. 图片标注

基本思路:

  • 目标是产生标注的语句,是一个语句生成的任务,LSTM?
  • 描述的对象大量图像信息,图像信息表达,CNN?

CNN网络中全连接层特征描述图片,特征与LSTM输入结合。

具体步骤:

(1) 模型设计-特征提取

全连接层特征用来描述原图片

LSTM输入:word+图片特征;输出下一word。

 

(2) 模型设计-数据准备

  • 图片CNN特征提取
  • 图片标注生成Word2Vect 向量
  • 生成训练数据:图片特征+第n单词向量:第n+1单词向量。

 

(3) 模型训练:

  • 运用迁移学习,CNN特征,语句特征应用已有模型
  • 最终的输出模型是LSTM,训练过程的参数设定:梯度上限(gradient clipping), 学习率调整(adaptivelearning)
  • 训练时间很长。

(4) 模型运行:

  • CNN特征提取
  • CNN 特征+语句开头,单词逐个预测

2. 视频行为识别 :

视频中在发 生什么?

常用方法总结:

(1) RNN用于CNN特征融合:

  • CNN 特征提取
  • LSTM判断
  • 多次识别结果分析。

不同的特征不同输出。

或者:所有特征作为一个输出。

(2) RNN用于CNN特征筛选+融合:

  • 并不是所有的视频 图像包含确定分类信息
  • RNN用于确定哪些frame 是有用的
  • 对有用的图像特征 融合。

(3) RNN用于目标检测:

  • CNN直接产生目标候选区
  • LSTM对产生候选区融合(相邻时刻位置近 似)
  • 确定最终的精确位置。

 

(4) 多种模型综合:应用中,为了产生***结果,多采用多模型ensemble形式。

责任编辑:赵宁宁 来源: 今日头条
相关推荐

2020-08-20 07:00:00

人工智能深度学习技术

2017-11-23 14:35:36

2009-09-03 11:47:43

Groovy与Java

2009-09-14 18:39:41

MCSE与CCNA

2010-08-23 14:44:06

思科

2009-07-22 09:02:45

Scala组合继承

2018-08-07 15:21:01

CNNRNN循环神经网络

2009-07-14 16:30:41

Swing与SWT

2012-08-27 13:20:00

CentosUbuntu

2023-08-14 23:23:56

2010-09-03 15:20:36

CSS组合CSS嵌套

2017-08-31 10:48:59

CNN 模型压缩算法

2024-10-05 10:37:20

AI模型

2020-07-23 09:55:59

深度学习神经网络人工智能

2017-04-27 10:38:28

排序算法比较分析

2022-05-06 16:15:29

SisenseTableauBI 工具

2021-12-25 23:25:04

LinuxDocker容器

2023-05-30 16:02:34

云托管云计算自托管

2020-07-07 07:00:00

RustGo语言编程语言

2010-06-10 13:41:43

RoseUML建模工具
点赞
收藏

51CTO技术栈公众号