机器学习之神经网络及Python实现

开发 前端 机器学习
神经网络在机器学习中有很大的应用,甚至涉及到方方面面。本文主要是简单介绍一下神经网络的基本理论概念和推算。同时也会介绍一下神经网络在数据分类方面的应用。

神经网络在机器学习中有很大的应用,甚至涉及到方方面面。本文主要是简单介绍一下神经网络的基本理论概念和推算。同时也会介绍一下神经网络在数据分类方面的应用。

[[246577]]

首先,当我们建立一个回归和分类模型的时候,无论是用最小二乘法(OLS)还是***似然值(MLE)都用来使得残差达到最小。因此我们在建立模型的时候,都会有一个loss function。

而在神经网络里也不例外,也有个类似的loss function。

对回归而言:

对分类而言:

然后同样方法,对于W开始求导,求导为零就可以求出极值来。

关于式子中的W。我们在这里以三层的神经网络为例。先介绍一下神经网络的相关参数。

神经网络的相关参数

***层是输入层,第二层是隐藏层,第三层是输出层。

在X1,X2经过W1的加权后,达到隐藏层,然后经过W2的加权,到达输出层

其中,

我们有:

至此,我们建立了一个初级的三层神经网络。

当我们要求其的loss function最小时,我们需要逆向来求,也就是所谓的backpropagation。

我们要分别对W1和W2进行求导,然后求出其极值。

从右手边开始逆推,首先对W2进行求导。

代入损失函数公式:

然后,我们进行化简:

化简到这里,我们同理再对W1进行求导。

我们可以发现当我们在做bp网络时候,有一个逆推回去的误差项,其决定了loss function 的最终大小。

在实际的运算当中,我们会用到梯度求解,来求出极值点。

总结一下来说,我们使用向前推进来理顺神经网络做到回归分类等模型。而向后推进来计算他的损失函数,使得参数W有一个***解。

当然,和线性回归等模型相类似的是,我们也可以加上正则化的项来对W参数进行约束,以免使得模型的偏差太小,而导致在测试集的表现不佳。

Python 的实现:

使用了KERAS的库

解决线性回归:

  1. model.add(Dense(1, input_dim=n_featuresactivation='linear'use_bias=True)) 
  2. # Use mean squared error for the loss metric and use the ADAM backprop algorithm 
  3. model.compile(loss='mean_squared_error'optimizer='adam'
  4. # Train the network (learn the weights) 
  5. # We need to convert from DataFrame to NumpyArray 
  6. history = model.fit(X_train.values, y_train.values, epochs=100,  
  7.  batch_size=1verbose=2validation_split=0

解决多重分类问题:

  1. # create model 
  2. model = Sequential() 
  3. model.add(Dense(64, activation='relu'input_dim=n_features)) 
  4. model.add(Dropout(0.5)) 
  5. model.add(Dense(64, activation='relu')) 
  6. model.add(Dropout(0.5)) 
  7. # Softmax output layer 
  8. model.add(Dense(7, activation='softmax')) 
  9. model.compile(loss='categorical_crossentropy'optimizer='adam'metrics=['accuracy']) 
  10. model.fit(X_train.values, y_train.values, epochs=20batch_size=16
  11. y_pred = model.predict(X_test.values) 
  12. y_te = np.argmax(y_test.values, axis = 1
  13. y_pr = np.argmax(y_pred, axis = 1
  14. print(np.unique(y_pr)) 
  15. print(classification_report(y_te, y_pr)) 
  16. print(confusion_matrix(y_te, y_pr)) 

当我们选取***参数时候,有很多种解决的途径。这里就介绍一种是gridsearchcv的方法,这是一种暴力检索的方法,遍历所有的设定参数来求得***参数。

  1. from sklearn.model_selection import GridSearchCV 
  2. def create_model(optimizer='rmsprop'): 
  3.  model = Sequential() 
  4.  model.add(Dense(64, activation='relu'input_dim=n_features)) 
  5.  model.add(Dropout(0.5)) 
  6.  model.add(Dense(64, activation='relu')) 
  7.  model.add(Dropout(0.5)) 
  8.  model.add(Dense(7, activation='softmax')) 
  9.  model.compile(loss='categorical_crossentropy'optimizeroptimizer=optimizer, metrics=['accuracy']) 
  10.   
  11.  return model 
  12. model = KerasClassifier(build_fn=create_modelverbose=0
  13. optimizers = ['rmsprop'] 
  14. epochs = [5, 10, 15] 
  15. batches = [128] 
  16. param_grid = dict(optimizer=optimizersepochsepochs=epochs, batch_size=batchesverbose=['2']) 
  17. grid = GridSearchCV(estimator=modelparam_gridparam_grid=param_grid) 
  18. grid.fit(X_train.values, y_train.values) 
责任编辑:赵宁宁 来源: 今日头条
相关推荐

2018-03-22 13:34:59

TensorFlow神经网络

2022-02-15 23:38:22

Python机器学习算法

2020-12-25 10:08:53

Python机器学习神经网络算法

2017-03-13 14:45:51

Python神经网络基础

2017-07-18 10:20:30

Python神经网络

2023-04-19 10:17:35

机器学习深度学习

2017-07-27 10:46:44

神经网络机器学习强化学习

2017-03-10 12:16:46

机器学习

2024-04-30 14:54:10

2020-08-06 10:11:13

神经网络机器学习算法

2017-07-06 17:03:45

BP算法Python神经网络

2017-08-04 14:23:04

机器学习神经网络TensorFlow

2023-11-15 16:12:41

人工智能机器学习深度学习

2017-03-07 13:55:30

自动驾驶神经网络深度学习

2020-05-06 10:29:45

机器学习神经网络TensorFlow

2020-06-23 11:49:08

神经网络数据图形

2019-05-07 19:12:28

机器学习神经网络Python

2020-09-08 13:02:00

Python神经网络感知器

2018-07-03 16:10:04

神经网络生物神经网络人工神经网络

2023-09-03 14:17:56

深度学习人工智能
点赞
收藏

51CTO技术栈公众号