拜托,面试别再问我TopK了

开发 开发工具
面试中,TopK,是问得比较多的几个问题之一,到底有几种方法,这些方案里蕴含的优化思路究竟是怎么样的,今天和大家聊一聊。

面试中,TopK,是问得比较多的几个问题之一,到底有几种方法,这些方案里蕴含的优化思路究竟是怎么样的,今天和大家聊一聊。

[[244926]]

画外音:除非校招,我在面试过程中从不问TopK这个问题,默认大家都知道。

问题描述:从arr[1, n]这n个数中,找出***的k个数,这就是经典的TopK问题。

栗子:从arr[1, 12]={5,3,7,1,8,2,9,4,7,2,6,6} 这n=12个数中,找出***的k=5个。

一、排序

排序

排序是最容易想到的方法,将n个数排序之后,取出***的k个,即为所得。

伪代码:

  1. sort(arr, 1, n); 
  2. return arr[1, k]; 

时间复杂度:O(n*lg(n))

分析:明明只需要TopK,却将全局都排序了,这也是这个方法复杂度非常高的原因。那能不能不全局排序,而只局部排序呢?这就引出了第二个优化方法。

二、局部排序

不再全局排序,只对***的k个排序。

冒泡是一个很常见的排序方法,每冒一个泡,找出***值,冒k个泡,就得到TopK。

伪代码:

  1. for(i=1 to k){ 
  2.          bubble_find_max(arr,i); 
  3. return arr[1, k]; 

时间复杂度:O(n*k)

分析:冒泡,将全局排序优化为了局部排序,非TopK的元素是不需要排序的,节省了计算资源。不少朋友会想到,需求是TopK,是不是这***的k个元素也不需要排序呢?这就引出了第三个优化方法。

三、堆

思路:只找到TopK,不排序TopK。

堆

先用前k个元素生成一个小顶堆,这个小顶堆用于存储,当前***的k个元素。

堆

接着,从第k+1个元素开始扫描,和堆顶(堆中最小的元素)比较,如果被扫描的元素大于堆顶,则替换堆顶的元素,并调整堆,以保证堆内的k个元素,总是当前***的k个元素。

堆

直到,扫描完所有n-k个元素,最终堆中的k个元素,就是猥琐求的TopK。

伪代码:

  1. heap[k] = make_heap(arr[1, k]); 
  2. for(i=k+1 to n){ 
  3.          adjust_heap(heep[k],arr[i]); 
  4. return heap[k]; 

时间复杂度:O(n*lg(k))

画外音:n个元素扫一遍,假设运气很差,每次都入堆调整,调整时间复杂度为堆的高度,即lg(k),故整体时间复杂度是n*lg(k)。

分析:堆,将冒泡的TopK排序优化为了TopK不排序,节省了计算资源。堆,是求TopK的经典算法,那还有没有更快的方案呢?

四、随机选择

随机选择算在是《算法导论》中一个经典的算法,其时间复杂度为O(n),是一个线性复杂度的方法。

这个方法并不是所有同学都知道,为了将算法讲透,先聊一些前序知识,一个所有程序员都应该烂熟于胸的经典算法:快速排序。

画外音:

  • 如果有朋友说,“不知道快速排序,也不妨碍我写业务代码呀”…额...
  • 除非校招,我在面试过程中从不问快速排序,默认所有工程师都知道;

其伪代码是:

  1. void quick_sort(int[]arr, int low, inthigh){ 
  2.          if(low== high) return; 
  3.          int i = partition(arr, low, high); 
  4.          quick_sort(arr, low, i-1); 
  5.          quick_sort(arr, i+1, high); 

其核心算法思想是,分治法。

分治法(Divide&Conquer),把一个大的问题,转化为若干个子问题(Divide),每个子问题“都”解决,大的问题便随之解决(Conquer)。这里的关键词是“都”。从伪代码里可以看到,快速排序递归时,先通过partition把数组分隔为两个部分,两个部分“都”要再次递归。

分治法有一个特例,叫减治法。

减治法(Reduce&Conquer),把一个大的问题,转化为若干个子问题(Reduce),这些子问题中“只”解决一个,大的问题便随之解决(Conquer)。这里的关键词是“只”。

二分查找binary_search,BS,是一个典型的运用减治法思想的算法,其伪代码是:

  1. int BS(int[]arr, int low, inthigh, int target){ 
  2.          if(low> high) return -1; 
  3.          mid= (low+high)/2; 
  4.          if(arr[mid]== target) return mid; 
  5.          if(arr[mid]> target) 
  6.                    return BS(arr, low, mid-1, target); 
  7.          else 
  8.                    return BS(arr, mid+1, high, target); 

从伪代码可以看到,二分查找,一个大的问题,可以用一个mid元素,分成左半区,右半区两个子问题。而左右两个子问题,只需要解决其中一个,递归一次,就能够解决二分查找全局的问题。

通过分治法与减治法的描述,可以发现,分治法的复杂度一般来说是大于减治法的:

  • 快速排序:O(n*lg(n))
  • 二分查找:O(lg(n))

话题收回来,快速排序的核心是:

  1. i = partition(arr, low, high); 

1. 这个partition是干嘛的呢?

顾名思义,partition会把整体分为两个部分。

更具体的,会用数组arr中的一个元素(默认是***个元素t=arr[low])为划分依据,将数据arr[low, high]划分成左右两个子数组:

  • 左半部分,都比t大
  • 右半部分,都比t小
  • 中间位置i是划分元素

以上述TopK的数组为例,先用***个元素t=arr[low]为划分依据,扫描一遍数组,把数组分成了两个半区:

  • 左半区比t大
  • 右半区比t小
  • 中间是t

partition返回的是t最终的位置i。

很容易知道,partition的时间复杂度是O(n)。

画外音:把整个数组扫一遍,比t大的放左边,比t小的放右边,***t放在中间N[i]。

2. partition和TopK问题有什么关系呢?

TopK是希望求出arr[1,n]中***的k个数,那如果找到了第k大的数,做一次partition,不就一次性找到***的k个数了么?

画外音:即partition后左半区的k个数。

问题变成了arr[1, n]中找到第k大的数。

再回过头来看看***次partition,划分之后:

  1. i = partition(arr, 1, n); 
  • 如果i大于k,则说明arr[i]左边的元素都大于k,于是只递归arr[1, i-1]里第k大的元素即可;
  • 如果i小于k,则说明说明第k大的元素在arr[i]的右边,于是只递归arr[i+1, n]里第k-i大的元素即可;

画外音:这一段非常重要,多读几遍。

这就是随机选择算法randomized_select,RS,其伪代码如下:

  1. int RS(arr, low, high, k){ 
  2.   if(low== high) return arr[low]; 
  3.   ipartition(arr, low, high); 
  4.   tempi-low; //数组前半部分元素个数 
  5.   if(temp>=k) 
  6.       return RS(arr, low, i-1, k); //求前半部分第k大 
  7.   else 
  8.       return RS(arr, i+1, high, k-i); //求后半部分第k-i大 

这是一个典型的减治算法,递归内的两个分支,最终只会执行一个,它的时间复杂度是O(n)。

再次强调一下:

  • 分治法,大问题分解为小问题,小问题都要递归各个分支,例如:快速排序
  • 减治法,大问题分解为小问题,小问题只要递归一个分支,例如:二分查找,随机选择

通过随机选择(randomized_select),找到arr[1, n]中第k大的数,再进行一次partition,就能得到TopK的结果。

五、总结

TopK,不难;其思路优化过程,不简单:

  • 全局排序,O(n*lg(n))
  • 局部排序,只排序TopK个数,O(n*k)
  • 堆,TopK个数也不排序了,O(n*lg(k))
  • 分治法,每个分支“都要”递归,例如:快速排序,O(n*lg(n))
  • 减治法,“只要”递归一个分支,例如:二分查找O(lg(n)),随机选择O(n)
  • TopK的另一个解法:随机选择+partition

【本文为51CTO专栏作者“58沈剑”原创稿件,转载请联系原作者】

戳这里,看该作者更多好文

责任编辑:赵宁宁 来源: 51CTO专栏
相关推荐

2018-10-28 22:37:00

计数排序排序面试

2018-11-01 13:49:23

桶排序排序面试

2020-04-22 11:19:07

贪心算法动态规划

2018-11-06 11:40:19

时间复杂度面试算法

2021-01-22 10:09:23

简历求职者面试

2019-04-16 13:30:05

表达式求值数据结构算法

2020-03-30 17:20:54

B+树SQL索引

2019-01-08 15:11:50

最大值最小值算法

2020-04-16 08:22:11

HTTPS加解密协议

2020-09-02 08:04:59

多线程互联网高并发

2022-03-14 10:14:43

底层系统Nacos

2020-12-11 09:24:19

Elasticsear存储数据

2018-11-09 09:34:05

面试Spring Clou底层

2020-09-24 14:40:55

Python 开发编程语言

2015-02-13 10:42:31

前端工具Dreamweaver

2019-07-10 10:06:24

面试官三次握手四次挥手

2019-08-29 09:49:50

2019-12-17 09:29:02

数据库架构分库分表

2020-08-26 08:18:39

数据索引查询

2019-03-12 14:48:29

路由器XBOXPS4
点赞
收藏

51CTO技术栈公众号