教你如何定位及优化SQL语句的性能问题

数据库 MySQL
在现如今的软件开发中,关系型数据库是做数据存储最重要的工具。无论是Oracale还是Mysql,都是需要通过SQL语句来和数据库进行交互的,这种交互我们通常称之为CRUD。本文,就基于MySql数据库,来介绍一下如何定位SQL语句的性能问题。

[[244302]]

在现如今的软件开发中,关系型数据库是做数据存储最重要的工具。无论是Oracale还是Mysql,都是需要通过SQL语句来和数据库进行交互的,这种交互我们通常称之为CRUD。在CRUD操作中,最最常用的也就是Read操作了。而对于不同的表结构,采用不同的SQL语句,性能上可能千差万别。本文,就基于MySql数据库,来介绍一下如何定位SQL语句的性能问题。

对于低性能的SQL语句的定位,最重要也是最有效的方法就是使用执行计划。

执行计划 

我们知道,不管是哪种数据库,或者是哪种数据库引擎,在对一条SQL语句进行执行的过程中都会做很多相关的优化,对于查询语句,最重要的优化方式就是使用索引。

而执行计划,就是显示数据库引擎对于SQL语句的执行的详细情况,其中包含了是否使用索引,使用什么索引,使用的索引的相关信息等。

  

(https://juejin.im/post/5a52386d51882573443c852a)

基本语法

explain select ...

mysql的explain 命令可以用来分析select 语句的运行效果。

除此之外,explain 的extended 扩展能够在原本explain的基础上额外的提供一些查询优化的信息,这些信息可以通过mysql的show warnings命令得到。 

  1. mysql> explain extended select * from account; 
  2. ******** 1. row *************************** 
  3.           id: 1 
  4. select_type: SIMPLE 
  5.        table: account 
  6.         type: ALL 
  7. possible_keys: NULL 
  8.          keyNULL 
  9.      key_len: NULL 
  10.          ref: NULL 
  11.         rows: 1 
  12.     filtered: 100.00 
  13.        Extra: 
  14. 1 row in set, 1 warning (0.00 sec) 
  15.  
  16. mysql> show warnings; 
  17. *************1. row *************************** 
  18. Level: Note 
  19.   Code: 1003 
  20. Message: select `dbunit`.`account`.`id` AS `id`,`dbunit`.`account`.`nameAS `namefrom `dbunit`.`account` 
  21. 1 row in set (0.00 sec) 

另外,对于分区表的查询,需要使用partitions命令。

explain partitions select ...

执行计划包含的信息 

不同版本的Mysql和不同的存储引擎执行计划不完全相同,但基本信息都差不多。mysql执行计划主要包含以下信息:

 

(https://juejin.im/post/5a52386d51882573443c852a)

id

由一组数字组成。表示一个查询中各个子查询的执行顺序;

  • id相同执行顺序由上至下。

  

(https://juejin.im/post/5a52386d51882573443c852a)

  • id不同,id值越大优先级越高,越先被执行。

  

(https://juejin.im/post/5a52386d51882573443c852a)

  • id为null时表示一个结果集,不需要使用它查询,常出现在包含union等查询语句中。

 

(https://juejin.im/post/5a52386d51882573443c852a)

select_type

每个子查询的查询类型,一些常见的查询类型。

id select_type description
1 SIMPLE 不包含任何子查询或union等查询
2 PRIMARY 包含子查询最外层查询就显示为 PRIMARY
3 SUBQUERY select或 where字句中包含的查询
4 DERIVED from字句中包含的查询
5 UNION 出现在union后的查询语句中
6 UNION RESULT 从UNION中获取结果集,例如上文的第三个例子

table

查询涉及到的数据表。

如果查询使用了别名,那么这里显示的是别名,如果不涉及对数据表的操作,那么这显示为null,如果显示为尖括号括起来的就表示这个是临时表,后边的N就是执行计划中的id,表示结果来自于这个查询产生。如果是尖括号括起来的,与类似,也是一个临时表,表示这个结果来自于union查询的id为M,N的结果集。

type

访问类型

  • ALL 扫描全表数据
  • index 遍历索引
  • range 索引范围查找
  • index_subquery 在子查询中使用 ref
  • unique_subquery 在子查询中使用 eq_ref
  • ref_or_null 对Null进行索引的优化的 ref
  • fulltext 使用全文索引
  • ref 使用非***索引查找数据
  • eq_ref 在join查询中使用PRIMARY KEYorUNIQUE NOT NULL索引关联。
  • const 使用主键或者***索引,且匹配的结果只有一条记录。
  • system const 连接类型的特例,查询的表为系统表。

 

(https://juejin.im/post/5a52386d51882573443c852a)

性能从好到差依次为:system,const,eq_ref,ref,fulltext,ref_or_null,unique_subquery,index_subquery,range,index_merge,index,ALL,除了ALL之外,其他的type都可以使用到索引,除了index_merge之外,其他的type只可以用到一个索引。

所以,如果通过执行计划发现某张表的查询语句的type显示为ALL,那就要考虑添加索引,或者更换查询方式,使用索引进行查询。

possible_keys

可能使用的索引,注意不一定会使用。查询涉及到的字段上若存在索引,则该索引将被列出来。当该列为 NULL时就要考虑当前的SQL是否需要优化了。

key

显示MySQL在查询中实际使用的索引,若没有使用索引,显示为NULL。

TIPS:查询中若使用了覆盖索引(覆盖索引:索引的数据覆盖了需要查询的所有数据),则该索引仅出现在key列表中。

select_type为index_merge时,这里可能出现两个以上的索引,其他的select_type这里只会出现一个。

key_length

索引长度char()、varchar()索引长度的计算公式:

 

  1. (Character Set:utf8mb4=4,utf8=3,gbk=2,latin1=1) * 列长度 + 1(允许null) + 2(变长列) 

其他类型索引长度的计算公式:ex:

 

  1. CREATE TABLE `student` ( 
  2.  `id` int(11) unsigned NOT NULL AUTO_INCREMENT, 
  3.  `namevarchar(128) NOT NULL DEFAULT ''
  4.  `age` int(11), 
  5.  PRIMARY KEY (`id`), 
  6.  UNIQUE KEY `idx` (`name`), 
  7.  KEY `idx_age` (`age`) 
  8. ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4; 

name 索引长度为: 编码为utf8mb4,列长为128,不允许为NULL,字段类型为varchar(128)。key_length = 128 * 4 + 0 + 2 = 514;

 

(https://juejin.im/post/5a52386d51882573443c852a)

age 索引长度:int类型占4位,允许null,索引长度为5。

 

(https://juejin.im/post/5a52386d51882573443c852a)

ref

表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值

如果是使用的常数等值查询,这里会显示const,如果是连接查询,被驱动表的执行计划这里会显示驱动表的关联字段,如果是条件使用了表达式或者函数,或者条件列发生了内部隐式转换,这里可能显示为func

rows

返回估算的结果集数目,注意这并不是一个准确值。

extra

extra的信息非常丰富,常见的有:

  • Using index 使用覆盖索引
  • Using where 使用了用where子句来过滤结果集
  • Using filesort 使用文件排序,使用非索引列进行排序时出现,非常消耗性能,尽量优化。
  • Using temporary 使用了临时表。

一些SQL优化建议 

1、SQL语句不要写的太复杂。

一个SQL语句要尽量简单,不要嵌套太多层。

2、使用『临时表』缓存中间结果。

简化SQL语句的重要方法就是采用临时表暂存中间结果,这样可以避免程序中多次扫描主表,也大大减少了阻塞,提高了并发性能。

3、使用like的时候要注意是否会导致全表扫

有的时候会需要进行一些模糊查询比如

  1. select id from table where username like ‘%hollis%’ 

关键词%hollis%,由于hollis前面用到了“%”,因此该查询会使用全表扫描,除非必要,否则不要在关键词前加%,

4、尽量避免使用!=或<>操作符

在where语句中使用!=或<>,引擎将放弃使用索引而进行全表扫描。

5、尽量避免使用 or 来连接条件

在 where 子句中使用 or 来连接条件,引擎将放弃使用索引而进行全表扫描。

可以使用

  1. select id from t where num=10union allselect id from t where num=20 

替代

  1. select id from t where num=10 or num=20 

6、尽量避免使用in和not in

在 where 子句中使用 in和not in,引擎将放弃使用索引而进行全表扫描。

可以使用

  1. select id from t where num between 10 and 20 

替代

  1. select id from t where num in (10,20) 

7、可以考虑强制查询使用索引

  1. select * from table force index(PRI) limit 2;(强制使用主键)  
  2. select * from table force index(hollis_index) limit 2;(强制使用索引"hollis_index") 
  3. select * from table force index(PRI,hollis_index) limit 2;(强制使用索引"PRI和hollis_index"

8、尽量避免使用表达式、函数等操作作为查询条件

9、尽量避免大事务操作,提高系统并发能力。

10、尽量避免使用游标

11、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

12、尽可能的使用 varchar/nvarchar 代替 char/nchar

13、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。

14、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率

15、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引 

 

责任编辑:庞桂玉 来源: 数据库开发
相关推荐

2009-04-28 09:38:53

SQL优化物理查询

2016-12-15 09:58:26

优化SQL高性能

2017-07-12 13:04:23

数据库SQL查询执行计划

2010-08-13 09:01:39

2018-03-30 14:30:10

数据库SQL语句性能优化

2018-03-30 13:59:22

数据库SQL语句性能优化

2016-10-21 16:05:44

SQLSQL SERVER技巧

2011-06-28 08:32:40

MySQL慢查询日志

2023-09-25 13:15:50

SQL数据库

2010-06-04 10:48:15

Hadoop性能

2011-03-31 11:14:51

Sql语句优化

2010-04-19 17:09:30

Oracle sql

2013-09-26 14:11:23

SQL性能优化

2010-04-13 15:04:16

Oracle优化

2024-11-18 17:16:18

Python性能优化编程

2010-11-04 15:39:40

DB2 SQL语句

2010-09-07 15:12:25

SQL语句优化

2010-04-12 14:22:13

Oracle性能sql语句

2022-03-11 07:30:04

SQLMySQLCPU

2024-08-28 11:03:52

点赞
收藏

51CTO技术栈公众号