什么是稀疏矩阵呢,就是在M*N的矩阵中,有效值的个数远小于无效值的个数,并且这些数据的分布没有规律。在压缩存储稀疏矩阵的时候我们只存储极少数的有效数据。我们在这里使用三元组存储每一个有效数据,三元组按原矩阵中的位置,以行优先级先后次序依次存放。下面我们来看一下代码实现。
- #include<iostream>
- #include<vector>
- #include<assert.h>
- usingnamespace std;
- template<class T>
- class SparseMatrix
- {
- //三元组
- template<class T>
- struct Trituple
- {
- Trituple()//给一个默认构造函数
- {}
- Trituple(size_t row, size_t col, const T& data)
- :_row(row)
- ,_col(col)
- ,_data(data)
- {}
- size_t _row;
- size_t _col;
- T _data;
- };
- public:
- //稀疏矩阵的压缩存储
- SparseMatrix()
- {}
- SparseMatrix(int* arr, size_t row, size_t col, const T& invalid)
- :_row(row)
- ,_col(col)
- ,_invalid(invalid)
- {
- for(int i = 0; i < row; i++)
- {
- for(int j = 0; j < col; ++j)
- {
- if(arr[i*col+j] != invalid)//将有效值存储在一个一维数组中
- _sm.push_back(Trituple<T>(i,j,arr[i*col+j]));//将三元组的无名对象push进去
- }
- }
- }
- //访问稀疏矩阵中row行col中的元素
- T& Acess(int row, int col)
- {
- //1、
- /*for(int idx = 0; idx < _sm.size(); idx++)//遍历一遍
- {
- if(_sm[idx]._row == row && _sm[idx]._col == col)//当前行列与我们要访问那个元素行列相同时返回这个有效值
- return _sm[idx]._data;
- }
- return _invalid;*///否则返回无效值
- //2、
- vector<Trituple<T>>::iterator it = _sm.begin();//定义一个迭代器,指向起始位置
- while(it != _sm.end())//未到***一个元素时
- {
- if(it->_row == row && it->_col == col)//行列相等输出值
- return it->_data;
- ++it;//迭代器向后移动
- }
- return _invalid;
- }
- //还原稀疏矩阵
- template<typename T>
- friend ostream& operator<<(ostream& _cout, SparseMatrix<T>& s)//重载<<
- {
- size_t idex = 0;
- for(size_t i = 0; i < s._row; i++)
- {
- for(size_t j = 0; j < s._col; j++)
- {
- if(idex < s._sm.size()/*防止数组越界*/ && s._sm[idex]._row == i && s._sm[idex]._col == j)
- {
- _cout<<s._sm[idex]._data<<" ";
- ++idex;
- }
- else
- _cout<<s._invalid<<" ";
- }
- _cout<<endl;
- }
- return _cout;
- }
- //实现稀疏矩阵的逆置 时间复杂度O(M*N)(M为元素个数N为矩阵列数)
- SparseMatrix<T> Transport()
- {
- SparseMatrix<T> sm;
- sm._row = _col;
- sm._col = _row;
- sm._invalid = _invalid;
- for(size_t i = 0; i < _col; i++)
- {
- vector<Trituple<T>>::iterator it = _sm.begin();
- while(it != _sm.end())
- {
- if(it->_col == i)//从原矩阵第0列开始,将每列中的有效值依次放入新的稀疏矩阵
- sm._sm.push_back(Trituple<T> (i, it->_row, it->_data));
- ++it;
- }
- }
- return sm;
- }
- //实现稀疏矩阵的快速转置 时间复杂度O(N)+O(M)
- SparseMatrix<T> FastTransport()
- {
- SparseMatrix<T> sm;
- sm._col = _row;
- sm._row = _col;
- sm._invalid = _invalid;
- sm._sm.resize(_sm.size());//开辟空间
- //1、统计原矩阵中每一列有多少个有效元素
- int* pCount = newint[_col];//开辟原矩阵中列个数的空间
- memset(pCount, 0, _col*sizeof(pCount[0]));
- for(int i = 0; i < _sm.size(); i++)
- pCount[_sm[i]._col]++;
- //2、原矩阵每一列在新矩阵中的起始位值
- int* pAddr = newint[_col];
- memset(pAddr, 0, _col*sizeof(pAddr[0]));
- for(int i = 1/*从1开始,***个位置起始为0已经放入*/; i < _sm.size(); i++)
- {
- pAddr[i] = pAddr[i - 1] + pCount[i - 1];//前一个起始位值+前一列有效元素个数
- }
- //3、放置元素到新空间
- for(int i = 0; i < _sm.size(); i++)
- {
- int& addr = pAddr[_sm[i]._col];
- sm._sm[addr] = Trituple<T>(_sm[i]._col,_sm[i]._row,_sm[i]._data);
- addr++;
- }
- return sm;
- }
- //实现稀疏矩阵的加法操作1
- /*SparseMatrix<T> operator+(const SparseMatrix<T>& sp)
- {
- int i = 0, j = 0, k = 0;
- T v;
- SparseMatrix<T> s;
- if(this->_col != sp._col || this->_row != sp._row)
- exit(1);
- s._row = sp._row;
- s._col = sp._col;
- s._invalid = sp._invalid;
- while(i < this->_sm.size() && j < sp._sm.size())
- {
- if(this->_sm[i]._row == sp._sm[j]._row)
- {
- if(this->_sm[i]._col < sp._sm[j]._col)
- {
- s._sm.push_back(Trituple<T>(this->_sm[i]._row, this->_sm[i]._col, this->_sm[i]._data));
- i++;
- k++;
- }
- else if(this->_sm[i]._col > sp._sm[j]._col)
- {
- s._sm.push_back(Trituple<T>(sp._sm[j]._row, sp._sm[j]._col, sp._sm[j]._data));
- j++;
- k++;
- }
- else
- {
- v = this->_sm[i]._data + sp._sm[j]._data;
- if(v)
- {
- s._sm.push_back(Trituple<T>(sp._sm[j]._row, sp._sm[j]._col, v));
- k++;
- }
- i++;
- j++;
- }
- }
- else if(this->_sm[i]._row < sp._sm[j]._row)
- {
- s._sm.push_back(Trituple<T>(this->_sm[i]._row, this->_sm[i]._col, this->_sm[i]._data));
- i++;
- k++;
- }
- else
- {
- s._sm.push_back(Trituple<T>(sp._sm[j]._row, sp._sm[j]._col, sp._sm[j]._data));
- j++;
- k++;
- }
- }
- return s;
- }*/
- //实现稀疏矩阵的加法操作2
- SparseMatrix<T> operator+(const SparseMatrix<T>& sp)
- {
- assert(_row == sp._row && _col == sp._col);//检测两个相加的矩阵行列是否相等
- SparseMatrix<T> ret;
- ret._row = _row;
- ret._col = _col;
- ret._invalid = _invalid;
- int iLidx = 0, iRidx = 0;//定义两个索引
- while(iLidx < _sm.size() && iRidx < sp._sm.size())
- {
- size_t AddrLeft = _sm[iLidx]._row*_col+_sm[iLidx]._col;//左边矩阵的起始位值
- size_t AddrRight = sp._sm[iRidx]._row*sp._col+sp._sm[iRidx]._col;//右边矩阵起始位值
- if(AddrLeft < AddrRight)//左<右,将左边有效值放入和矩阵中,左边的索引加加
- {
- ret._sm.push_back(Trituple<T>(_sm[iLidx]._row, _sm[iLidx]._col, _sm[iLidx]._data));
- iLidx++;
- }
- elseif(AddrLeft > AddrRight)
- {
- ret._sm.push_back(Trituple<T>(sp._sm[iRidx]._row, sp._sm[iRidx]._col, sp._sm[iRidx]._data));
- iRidx++;
- }
- else//当左边等于右边判断相加后和是否为0,不为0放入
- {
- Trituple<T> temp(_sm[iLidx]);
- temp._data += sp._sm[iRidx]._data;
- if(temp._data)
- {
- ret._sm.push_back(temp);
- iLidx++;
- iRidx++;
- }
- }
- }
- while(iLidx < _sm.size())//左边还有剩余则放入剩余元素
- {
- ret._sm.push_back(Trituple<T>(_sm[iLidx]._row, _sm[iLidx]._col, _sm[iLidx]._data));
- iLidx++;
- }
- while(iRidx < sp._sm.size())
- {
- ret._sm.push_back(Trituple<T>(sp._sm[iRidx]._row, sp._sm[iRidx]._col, sp._sm[iRidx]._data));
- iRidx++;
- }
- return ret;
- }
- private:
- size_t _row;
- size_t _col;
- vector<Trituple<T>> _sm;
- T _invalid;//无效值
- };
- int main()
- {
- int arr[6][5] = {
- {1,0,3,0,5},
- {0,0,0,0,0},
- {0,0,0,0,0},
- {1,0,3,0,5},
- {0,0,0,0,0},
- {0,0,0,0,0}};
- int arr1[6][5] = {
- {1,0,3,0,5},
- {0,0,0,0,0},
- {0,0,2,4,0},
- {1,0,3,0,5},
- {0,0,0,1,0},
- {0,0,0,0,1}};
- SparseMatrix<int> s((int*)arr,6,5,0);
- SparseMatrix<int> s1((int*)arr1,6,5,0);
- cout<<"访问三行四列元素"<<endl;
- cout<<s.Acess(3,4)<<endl;
- cout<<s<<endl;
- cout<<"快速转置"<<endl;
- cout<<s.FastTransport();
- cout<<endl;
- cout<<"矩阵s:"<<endl;
- cout<<s<<endl;
- cout<<"矩阵s1:"<<endl;
- cout<<s1<<endl;
- cout<<"s+s1求和:"<<endl;
- cout<<s1+s<<endl;
- system("pause");
- return 0;
- }
运行结果截图:
在上面的代码中用到C++模板、标准库中vector容器,以及迭代器实现了一些基本的操作,如访问稀疏矩阵中某个元素,输出稀疏矩阵、稀疏矩阵的转置以及快速转置还有两个稀疏矩阵的加法。
快速转置操作的基本思路是:
(1)统计原矩阵中每一列有多少个有效元素;
(2)原矩阵中每一列在新矩阵中的起始地址;
(3)放置元素到新空间中。
还需注意的是,在我们打印这个稀疏矩阵时虽然也可以直接调用访问元素的Acess接口,但是每次进去之后都得遍历一遍,时间复杂度较高,所以我们不采取这种办法,而是比较当前行列的值,若相等输出有效元素,不等则输出无效元素0。