如何优雅地使用Redis之位图操作

存储 存储软件 Redis
位图不是一个真实的数据类型,而是定义在字符串类型上的面向位的操作的集合。由于字符串类型是二进制安全的二进制大对象,并且最大长度是 512MB,适合于设置 2^32个不同的位。

 在进入今天的主题前,先简单地解释下Redis中的位图到底是什么。Redis官方文档对于位图的介绍如下:

位图不是一个真实的数据类型,而是定义在字符串类型上的面向位的操作的集合。由于字符串类型是二进制安全的二进制大对象,并且***长度是 512MB,适合于设置 2^32个不同的位。

位操作分为两组:常量时间单个位的操作,像设置一个位为 1 或者 0,或者获取该位的值。对一组位的操作,例如计算指定范围位的置位数量。

位图的***优势是有时是一种非常显著的节省空间来存储信息的方式。例如,在一个系统中,不同用户由递增的用户 ID 来表示,可以使用 512MB 的内存来表示 400 万用户的单个位信息(例如他们是否需要接收信件)。 

简而言之,位图操作是用来操作比特位的,其优点是节省内存空间。为什么可以节省内存空间呢?假如我们需要存储100万个用户的登录状态,使用位图的话最少只需要100万个比特位(比特位1表示登录,比特位0表示未登录)就可以存储了,而如果以字符串的形式存储,比如说以userId为key,是否登录(字符串“1”表示登录,字符串“0”表示未登录)为value进行存储的话,就需要存储100万个字符串了,相比之下使用位图存储占用的空间要小得多,这就是位图存储的优势。

位图常用操作

位图的常用操作如下:

  • setbit

设置特定key对应的比特位的值。

  • getbit

获取特定key对应的比特位的值。

  • bitcount

统计给定key对应的字符串比特位为1的数量。

使用位图存储用户登录状态

位图的常见应用是用来存储状态值,比如存储用户的登录状态。

假设我们现在有一个需求,需要记录用户注册以来每天的登录状态,那么我们就可以以用户id为key,然后以日期或者日期的偏移量作为下标,将登录状态存储到对应的比特位中,这样就可以很方便地获取用户某一天的登录状态了。

接下来看代码:

  1. public class UserLoginStatusService { 
  2.  
  3.     private static final String host="111.111.111.111"
  4.  
  5.     private static final int port=6379; 
  6.  
  7.     private static final Jedis jedis=new Jedis(host,port); 
  8.  
  9.     //日期的初始值(也可以理解为用户的注册时间), 
  10.     //下文需要使用日期的偏移量作为redis位图的offset, 
  11.     //因此需要将要保存登录状态的日期减去该初始日期。 
  12.     //这里使用了Java 8的新日期API 
  13.     private static final LocalDate beginDate=LocalDate.of(2018,1,1); 
  14.  
  15.     static { 
  16.         jedis.connect(); 
  17.     } 
  18.  
  19.     public void setLoginStatus(String userId, LocalDate date,boolean isLogin){ 
  20.         long offset = getDateDuration(beginDate, date); 
  21.         jedis.setbit(userId,offset,isLogin); 
  22.     } 
  23.  
  24.     public boolean getLoginStatus(String userId,LocalDate date){ 
  25.         long offset = getDateDuration(beginDate, date); 
  26.         return jedis.getbit(userId,offset); 
  27.     } 
  28.  
  29.     private long getDateDuration(LocalDate start ,LocalDate end){ 
  30.         return start.until(end, ChronoUnit.DAYS); 
  31.     } 
  32.  
  33.     public static void main(String[] args) { 
  34.         UserLoginStatusService userLoginStatusService=new UserLoginStatusService(); 
  35.         String userId="user_1"
  36.         LocalDate today = LocalDate.now(); 
  37.         userLoginStatusService.setLoginStatus(userId,today,true); 
  38.         boolean todayLoginStatus = userLoginStatusService.getLoginStatus(userId, today); 
  39.         System.out.println(String.format("The loginStatus of %s in %s is %s",userId,today,todayLoginStatus)); 
  40.         LocalDate yesterday = LocalDate.now().minusDays(1); 
  41.         boolean yesterdayLoginStatus = userLoginStatusService.getLoginStatus(userId, yesterday); 
  42.         System.out.println(String.format("The loginStatus of %s in %s is %s",userId,yesterday,yesterdayLoginStatus)); 
  43.     } 
  44.  

代码不复杂,我们在main方法中设置当天的登录状态为true,然后分别查出当天的登录状态和昨天的登录状态,由于redis位图的比特位默认是0,所以该代码的正确输出应该是今天已登录,昨天未登录,我们运行一次看看结果。

从程序运行结果来看,Redis的位图确实满足了我们的需求,且兼有节省存储空间的优点。

使用位图统计登录天数

接下来我们有一个新需求,就是统计某个用户注册后前10天的登录天数,Redis中有个bitcount命令,可以统计某个字符串中的比特位为1的数量,其还有2个参数start和end,表示要统计的范围,咋一看好像可以用来实现我们这个需求,但是这里有一个坑需要注意下,bitcount命令的start和end参数指的是字节的索引,而不是比特位的索引,而我们如果要使用位图来统计某个用户注册后前10天的登录天数的话,需要统计的是比特位索引从0到9的比特值为1的数量,所以直接使用bitcount命令显然是无法满足要求的。那么假如说我们一定要用位图来存储登录状态呢,应该咋办呢?其实办法还是有的。我们可以先拿到比特位索引从0到9所在的字节数组,再将该字节数组解析成二进制形式,进而统计出比特位索引从0到9比特值为1的数量。

要拿到比特位索引所在的字节在字节数组中的下标比较简单,只要将比特位索引除以8(一个字节包含8个比特位)再向下取整就行了。接下来就是使用redis的getrange命令来截取字节数组了。

拿到了字节数组,接下来就是解析字节数组,统计其中比特值为1的数量了。我们先从最简单的单个字节说起,假设一个字节的各个比特位的值如下:

我们设比特位索引为index,假如我们要计算比特位为7的比特值,只需要将原值直接跟1进行与运算就行了。要计算比特位为6的比特值,只需要将原值右移1位,再跟1进行与运算。以此类推,要计算第index位的比特值,只需要先右移(7-index)位,再跟1进行与运算即可。

只要能够统计出截取出来的的字节数组中比特位的值为1的数量,接下来再减去不包含在对应比特索引中的比特值为1的数量,即可统计出给定的比特索引范围内比特值为1的数量。

这么说有点拗口,我们以上述例子为例进行讲解吧。我们要统计出用户注册后前10天的登录天数,如果用位图存储用户登录状态,位图中的索引为注册天数的话,那么我们需要统计比特索引从0到9的比特值为1的数量,才能计算出该用户注册后前10天的登录天数。

我们先计算出比特索引从0到9包含在哪一段字节数组中,前面说了,只需要将对应的索引除以8,再向下取整就行了。从而可以得知比特位索引从0到9对应的是下标从0到1的字节数组。

接下来使用getrange命令截取该字节数组,假设其值如下:

假设比特索引0到9对应的字节数组的比特值情况如上所示,我们需要统计的是***个字节(下标为0)中的0到7位中比特值为1的数量,再加上第二个字节(下标为1)中的第0到1位中比特值为1的数量。加起来刚好10位,也就是对应用户注册前10天的登录天数。当然我们也可以统计出这2个字节中的比特值为1的总数,再减去第二个字节的从2到7位(上述表格标红的地方)中比特值为1的数量,也可统计出该用户注册后前10天的登录天数。本文用的是第二种方法。

接下来上代码:

  1. private static final int BIT_AMOUNT_IN_ONE_BYTE =8; 
  2.  
  3.     private Jedis jedis; 
  4.  
  5.  
  6.     public int bitCountByBitIndex(String key, long startBitIndex, long endBitIndex) { 
  7.         int startByteIndex = getByteIndexInTheBytes(startBitIndex); 
  8.         int endByteIndex = getByteIndexInTheBytes(endBitIndex); 
  9.         byte[] bytes = jedis.getrange(key.getBytes(), startByteIndex, endByteIndex); 
  10.         int totalBitInBytes = getTotalBitInBytes(bytes); 
  11.         int startBitIndexInFirstByte = getBitIndexInTheByte(startBitIndex); 
  12.         int endBitIndexInLastByte = getBitIndexInTheByte(endBitIndex); 
  13.         byte firstByte = bytes[0]; 
  14.         byte lastByte = bytes[bytes.length-1]; 
  15.         for(int i=7;i>(BIT_AMOUNT_IN_ONE_BYTE-1-startBitIndexInFirstByte);i--){ 
  16.             if(((firstByte>>i)&1)==1){ 
  17.                 totalBitInBytes--; 
  18.             } 
  19.         } 
  20.         for(int i=0;i<(BIT_AMOUNT_IN_ONE_BYTE-1-endBitIndexInLastByte);i++){ 
  21.             if(((lastByte>>i)&1)==1){ 
  22.                 totalBitInBytes--; 
  23.             } 
  24.         } 
  25.  
  26.         return totalBitInBytes; 
  27.     } 
  28.  
  29.     private int getTotalBitInBytes(byte[] bytes){ 
  30.         int count=0; 
  31.         for(byte b:bytes){ 
  32.             for(int i = 0; i< BIT_AMOUNT_IN_ONE_BYTE; i++){ 
  33.                 if(((b>>i)&1)==1){ 
  34.                     count++; 
  35.                 } 
  36.             } 
  37.         } 
  38.         return count
  39.     } 
  40.  
  41.     private int getByteIndexInTheBytes(long offset){ 
  42.         return (int) offset/ BIT_AMOUNT_IN_ONE_BYTE; 
  43.     } 
  44.  
  45.     private int getBitIndexInTheByte(long offset){ 
  46.         return (int)(offset-offset/ BIT_AMOUNT_IN_ONE_BYTE * BIT_AMOUNT_IN_ONE_BYTE); 
  47.     } 

代码就不注释了,整体思路已经在上面讲解了。

当然要实现本文所述的功能,也不一定非要这么做,还是有其他的方案的。比如:可以将放入位图的offset统一乘以8(一个字节占8比特),这样一来就可以直接用redis的bitcount来统计对应索引范围内的比特值为1的数量了,当然这种方案的缺点也相当明显,就是浪费内存,因为原先只需要1比特存储的数据,现在需要8比特存储,所以这种方案不能很好地利用位图索引节省存储空间的特点。

责任编辑:武晓燕 来源: 黄泽杰
相关推荐

2021-01-28 14:53:19

PHP编码开发

2021-03-24 10:20:50

Fonts前端代码

2023-03-28 08:07:12

2017-12-14 14:17:08

Windows使用技巧手册

2024-11-13 16:37:00

Java线程池

2021-05-12 22:07:43

并发编排任务

2021-01-18 13:17:04

鸿蒙HarmonyOSAPP

2020-03-26 11:04:00

Linux命令光标

2022-05-13 21:20:23

组件库样式选择器

2022-05-24 06:07:48

JShack用户代码

2024-04-24 12:34:08

Spring事务编程

2020-11-05 18:30:32

接口测试

2021-07-15 08:58:15

指定配置项Go

2022-06-07 08:59:58

hookuseRequestReact 项目

2020-10-22 10:15:33

优化Windows电脑

2021-09-08 08:34:37

Go 文档Goland

2023-02-13 14:37:13

开发web浏览器

2020-12-08 08:08:51

Java接口数据

2024-01-05 16:43:30

数据库线程

2022-11-11 07:48:56

ORM链式轮播图
点赞
收藏

51CTO技术栈公众号