7个提升Python程序性能的好习惯

开发 后端
掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的资源浪费。

7个提升Python程序性能的好习惯

掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的资源浪费。

1、使用局部变量

尽量使用局部变量代替全局变量:便于维护,提高性能并节省内存。

使用局部变量替换模块名字空间中的变量,例如 ls = os.linesep。一方面可以提高程序性能,局部变量查找速度更快;另一方面可用简短标识符替代冗长的模块变量,提高可读性。

2、减少函数调用次数

对象类型判断时,采用isinstance()***,采用对象类型身份(id())次之,采用对象值(type())比较最次。

#判断变量num是否为整数类型

type(num) == type(0)
#调用三次函数
type(num) is type(0)
#身份比较
isinstance(num,(int))
#调用一次函数

不要在重复操作的内容作为参数放到循环条件中,避免重复运算。

#每次循环都需要重新执行len(a)
while i < len(a):
statement
#len(a)仅执行一次
m = len(a)
while i < m:
statement

如需使用模块X中的某个函数或对象Y,应直接使用from X import Y,而不是import X; X.Y。这样在使用Y时,可以减少一次查询(解释器不必首先查找到X模块,然后在X模块的字典中查找Y)。

3、采用映射替代条件查找

映射(比如dict等)的搜索速度远快于条件语句(如if等)。Python中也没有select-case语句。

#if查找
if a == 1:
b = 10
elif a == 2:
b = 20
...
#dict查找,性能更优
d = {1:10,2:20,...}
b = d[a]

4、直接迭代序列元素

对序列(str、list、tuple等),直接迭代序列元素,比迭代元素的索引速度要更快。

a = [1,2,3]
#迭代元素
for item in a:
print(item)
#迭代索引
for i in range(len(a)):
print(a[i])

5、采用生成器表达式替代列表解析

列表解析(list comprehension),会产生整个列表,对大量数据的迭代会产生负面效应。

而生成器表达式则不会,其不会真正创建列表,而是返回一个生成器,在需要时产生一个值(延迟计算),对内存更加友好。

#计算文件f的非空字符个数
#生成器表达式
l = sum([len(word) for line in f for word in line.split()])
#列表解析
l = sum(len(word)
for line in f for word in line.split())

6、先编译后调用

使用eval()、exec()函数执行代码时,***调用代码对象(提前通过compile()函数编译成字节码),而不是直接调用str,可以避免多次执行重复编译过程,提高程序性能。

正则表达式模式匹配也类似,也***先将正则表达式模式编译成regex对象(通过re.complie()函数),然后再执行比较和匹配。

7、模块编程习惯

模块中的***级别Python语句(没有缩进的代码)会在模块导入(import)时执行(不论其是否真的必要执行)。因此,应尽量将模块所有的功能代码放到函数中,包括主程序相关的功能代码也可放到main()函数中,主程序本身调用main()函数。

可以在模块的main()函数中书写测试代码。在主程序中,检测name的值,如果为'main'(表示模块是被直接执行),则调用main()函数,进行测试;如果为模块名字(表示模块是被调用),则不进行测试。 

责任编辑:庞桂玉 来源: Python中文社区
相关推荐

2019-02-01 09:50:00

提升Python程序性能

2022-10-08 13:13:14

Python程序性能

2014-10-24 10:13:19

程序员

2009-02-12 09:44:48

Web应用高性能习惯

2011-07-15 15:10:37

PHP

2022-07-04 17:32:12

DevOpsAIOps

2024-05-16 11:04:06

C#异步编程编程

2011-09-20 10:41:45

Web

2012-05-19 22:24:34

MVVM

2021-05-29 07:32:14

优秀程序员代码

2022-10-08 10:42:20

Linux虚拟机

2024-12-05 15:33:50

Python列表元组

2011-03-29 12:41:49

编程

2024-12-09 09:50:00

JVM逃逸逃逸分析

2009-01-03 14:34:49

ibmdwPHP

2021-08-17 09:55:50

pandas 8indexPython

2012-01-06 13:48:59

flash

2020-11-02 13:03:28

MySQLSQL索引

2009-01-03 10:40:41

PHP编程代码

2024-02-26 08:13:51

MySQLSQL性能
点赞
收藏

51CTO技术栈公众号