《复仇者联盟3:***战争》于 2018 年 5 月 11 日在中国大陆上映。截止 5 月 16 日,它累计票房达到 15.25 亿。这票房纪录已经超过了漫威系列单部电影的票房纪录。不得不说,漫威电影已经成为一种文化潮流。
先贴海报欣赏下:
复联 3 作为漫威 10 年一剑的收官之作。漫威确认下了很多功夫, 给我们奉献一部精彩绝伦的电影。自己也利用周末时间去电影院观看。看完之后,个人觉得无论在打斗特效方面还是故事情节,都是给人愉悦的享受。同时,电影还保持以往幽默搞笑的风格,经常能把观众逗得捧腹大笑。如果还没有去观看的朋友,可以去电影院看看,确实值得一看。
本文通过 Python 制作网络爬虫,爬取豆瓣电影评论,并分析然后制作豆瓣影评的云图。
1 分析
先通过影评网页确定爬取的内容。我要爬取的是用户名,是否看过,五星评论值,评论时间,有用数以及评论内容。
然后确定每页评论的 url 结构。
第二页 url 地址:
第三页 url 地址:
***发现其中的规律:除了首页,后面的每页 url 地址中只有 start= 的值逐页递增,其他都是不变的。
2 数据爬取
本文爬取数据,采用的主要是 requests 库和 lxml 库中 Xpath。豆瓣网站虽然对网络爬虫算是很友好,但是还是有反爬虫机制。如果你没有设置延迟,一下子发起大量请求,会被封 IP 的。另外,如果没有登录豆瓣,只能访问前 10 页的影片。因此,发起爬取数据的 HTTP 请求要带上自己账号的 cookie。搞到 cookie 也不是难事,可以通过浏览器登录豆瓣,然后在开发者模式中获取。
我想从影评首页开始爬取,爬取入口是:https://movie.douban.com/subject/24773958/comments?status=P,然后依次获取页面中下一页的 url 地址以及需要爬取的内容,接着继续访问下一个页面的地址。
- import jieba
- import requests
- import pandas as pd
- import time
- import random
- from lxml import etree
- def start_spider():
- base_url = 'https://movie.douban.com/subject/24773958/comments'
- start_url = base_url + '?start=0'
- number = 1
- html = request_get(start_url)
- while html.status_code == 200:
- # 获取下一页的 url
- selector = etree.HTML(html.text)
- nextpage = selector.xpath("//div[@id='paginator']/a[@class='next']/@href")
- nextpage = nextpage[0]
- next_url = base_url + nextpage
- # 获取评论
- comments = selector.xpath("//div[@class='comment']")
- marvelthree = []
- for each in comments:
- marvelthree.append(get_comments(each))
- data = pd.DataFrame(marvelthree)
- # 写入csv文件,'a+'是追加模式
- try:
- if number == 1:
- csv_headers = ['用户', '是否看过', '五星评分', '评论时间', '有用数', '评论内容']
- data.to_csv('./Marvel3_yingpping.csv', header=csv_headers, index=False, mode='a+', encoding='utf-8')
- else:
- data.to_csv('./Marvel3_yingpping.csv', header=False, index=False, mode='a+', encoding='utf-8')
- except UnicodeEncodeError:
- print("编码错误, 该数据无法写到文件中, 直接忽略该数据")
- data = []
- html = request_get(next_url)
我在请求头中增加随机变化的 User-agent, 增加 cookie。***增加请求的随机等待时间,防止请求过猛被封 IP。
- def request_get(url):
- '''
- 使用 Session 能够跨请求保持某些参数。
- 它也会在同一个 Session 实例发出的所有请求之间保持 cookie
- '''
- timeout = 3
- UserAgent_List = [
- "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36",
- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2227.1 Safari/537.36",
- "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2227.0 Safari/537.36",
- "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2227.0 Safari/537.36",
- "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2226.0 Safari/537.36",
- "Mozilla/5.0 (Windows NT 6.4; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2225.0 Safari/537.36",
- "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2225.0 Safari/537.36",
- "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2224.3 Safari/537.36",
- "Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.93 Safari/537.36",
- "Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.93 Safari/537.36",
- "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/37.0.2049.0 Safari/537.36",
- "Mozilla/5.0 (Windows NT 4.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/37.0.2049.0 Safari/537.36",
- "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.67 Safari/537.36",
- "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.67 Safari/537.36",
- "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.3319.102 Safari/537.36",
- "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.2309.372 Safari/537.36",
- "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.2117.157 Safari/537.36",
- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36",
- "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1866.237 Safari/537.36",
- ]
- header = {
- 'User-agent': random.choice(UserAgent_List),
- 'Host': 'movie.douban.com',
- 'Referer': 'https://movie.douban.com/subject/24773958/?from=showing',
- }
- session = requests.Session()
- cookie = {
- 'cookie': "你的 cookie 值",
- }
- time.sleep(random.randint(5, 15))
- response = requests.get(url, headers=header, cookies=cookie_nologin, timeout = 3)
- if response.status_code != 200:
- print(response.status_code)
- return response
***一步就是数据获取:
- def get_comments(eachComment):
- commentlist = []
- user = eachComment.xpath("./h3/span[@class='comment-info']/a/text()")[0] # 用户
- watched = eachComment.xpath("./h3/span[@class='comment-info']/span[1]/text()")[0] # 是否看过
- rating = eachComment.xpath("./h3/span[@class='comment-info']/span[2]/@title") # 五星评分
- if len(rating) > 0:
- rating = rating[0]
- comment_time = eachComment.xpath("./h3/span[@class='comment-info']/span[3]/@title") # 评论时间
- if len(comment_time) > 0:
- comment_time = comment_time[0]
- else:
- # 有些评论是没有五星评分, 需赋空值
- comment_time = rating
- rating = ''
- votes = eachComment.xpath("./h3/span[@class='comment-vote']/span/text()")[0] # "有用"数
- content = eachComment.xpath("./p/text()")[0] # 评论内容
- commentlist.append(user)
- commentlist.append(watched)
- commentlist.append(rating)
- commentlist.append(comment_time)
- commentlist.append(votes)
- commentlist.append(content.strip())
- # print(list)
- return commentlist
3 制作云图
因为爬取出来评论数据都是一大串字符串,所以需要对每个句子进行分词,然后统计每个词语出现的评论。我采用 jieba 库来进行分词,制作云图,我则是将分词后的数据丢给网站 worditout 处理。
- def split_word():
- with codecs.open('Marvel3_yingpping.csv', 'r', 'utf-8') as csvfile:
- reader = csv.reader(csvfile)
- content_list = []
- for row in reader:
- try:
- content_list.append(row[5])
- except IndexError:
- pass
- content = ''.join(content_list)
- seg_list = jieba.cut(content, cut_all=False)
- result = '\n'.join(seg_list)
- print(result)
***制作出来的云图效果是:
"灭霸"词语出现频率***,其实这一点不意外。因为复联 3 整部电影的故事情节大概是,灭霸在宇宙各个星球上收集 6 颗***宝石,然后每个超级英雄为了防止灭霸毁灭整个宇宙,组队来阻止灭霸。