编译:潇夜、大饼、蒋宝尚
近日,谷歌刚刚上线的机器学习课程刷屏科技媒体头条。激动过后,多数AI学习者会陷入焦虑:入坑人工智能,到底要从何入手?
的确,如今学习人工智能最大的困难不是找不到资料,更多同学的痛苦是:网上资源太多了,以至于没法知道从哪儿开始搜索,也没法知道搜到什么程度。
为了节省大家的时间,我们搜遍网络把最好的免费资源汇总整理到这篇文章当中。这些链接够你学上很久,而且你看完本文一定会再次惊叹:现在网上关于机器学习、深度学习和人工智能的信息真的非常多。
本文罗列了以下几个方面的学习资源,供大家收藏:知名研究人员、人工智能研究机构、视频课程、博客、Medium、书籍、YouTube、Quora、Reddit、GitHub、播客、新闻订阅、科研会议、研究论文链接、教程以及各种小抄表。
研究人员
许多著名的人工智能研究人员都在网络上有很强的影响力。下面我列出了20个专家,也给出了能够找到他们详细信息的网站。
- Sebastian Thrun:http://robots.stanford.edu
- Yann Lecun:http://yann.lecun.com
- Nando de Freitas:http://www.cs.ubc.ca/~nando/
- Andrew Ng:http://www.andrewng.org
- Daphne Koller:http://ai.stanford.edu/users/koller/
- Adam Coates:http://cs.stanford.edu/~acoates/
- Jürgen Schmidhuber:http://people.idsia.ch/~juergen/
- Geoffrey Hinton:http://www.cs.toronto.edu/~hinton/
- Terry Sejnowski:http://www.salk.edu/scientist/terrence-sejnowski/
- Michael Jordan:https://people.eecs.berkeley.edu/~jordan/
- Peter Norvig:http://norvig.com
- Yoshua Bengio:http://www.iro.umontreal.ca/~bengioy/yoshua_en/
- Ian Goodfellow:http://www.iangoodfellow.com
- Andrej Karpathy:http://karpathy.github.io
- Richard Socher:http://www.socher.org
- Demis Hassabis:http://demishassabis.com
- Christopher Manning:https://nlp.stanford.edu/~manning/
- Fei-Fei Li:http://vision.stanford.edu/people.html
- François Chollet:https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
- Larry Carin:http://people.ee.duke.edu/~lcarin/
- Dan Jurafsky:https://web.stanford.edu/~jurafsky/
- Oren Etzioni:http://allenai.org/team/orene/
人工智能研究机构
许多研究机构致力于促进人工智能的研究与开发。下面我列出了一些机构的网站。
- OpenAI(推特关注数12.7万):https://openai.com
- DeepMind(推特关注数8万):https://deepmind.com
- Google Research(推特关注数110万):https://research.googleblog.com
- AWS AI(推特关注数140万):https://aws.amazon.com/blogs/ai/
- Facebook AI Research:https://research.fb.com/category/facebook-ai-research-fair/
- Microsoft Research(推特关注数34.1万):https://www.microsoft.com/en-us/research/
- Baidu Research(推特关注数1.8万):http://research.baidu.com
- IntelAI(推特关注数2千):https://software.intel.com/en-us/ai-academy
- AI²(推特关注数4.6千):http://allenai.org
- Partnership on AI(推特关注数5千):https://www.partnershiponai.org
视频课程
网上也有大量的视频课程和教程,其中很多都是免费的,还有一些付费的也很不错,但是在这篇文章中我只提供免费内容的链接。下面我列出的这些免费课程可以让你学上好几个月:
- Coursera — Machine Learning (Andrew Ng):https://www.coursera.org/learn/machine-learning#syllabus
- Coursera — Neural Networks for Machine Learning (Geoffrey Hinton):https://www.coursera.org/learn/neural-networks
- Machine Learning (mathematicalmonk):https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
- Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):http://course.fast.ai/start.html
- Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016):https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
- 斯坦福CS231n【中字】视频,大数据文摘经授权翻译:http://study.163.com/course/introduction/1003223001.htm
- Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017):https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
- Oxford Deep NLP 2017 (Phil Blunsom et al.):https://github.com/oxford-cs-deepnlp-2017/lectures
- 牛津Deep NLP【中字】视频,大数据文摘经授权翻译:http://study.163.com/course/introduction/1004336028.htm
- Reinforcement Learning (David Silver):http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Practical Machine Learning Tutorial with Python (sentdex):https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
油管 YouTube
YouTube上有很多频道或者用户都经常会发布一些AI或者机器学习相关的内容,我把这些链接按照订阅数/观看数多少列示在下边,这样方便看出来哪个更受欢迎。
- sendex(22.5万订阅,2100万次观看):https://www.youtube.com/user/sentdex
- Siraj Raval(14万订阅,500万次观看):https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
- Two Minute Papers(6万订阅,330万次观看):https://www.youtube.com/user/keeroyz
- DeepLearning.TV(4.2万订阅,140万观看):https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
- Data School(3.7万订阅,180万次观看):https://www.youtube.com/user/dataschool
- Machine Learning Recipes with Josh Gordon(32.4万次观看):https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
- Artificial Intelligence — Topic(1万订阅):https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
- Allen Institute for Artificial Intelligence (AI2)(1.6千订阅,6.9万次观看):https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
- Machine Learning at Berkeley(634订阅,4.8万次观看):https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
- Understanding Machine Learning — Shai Ben-David(973订阅,4.3万次观看):https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
- Machine Learning TV(455订阅,1.1万次观看):https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw
博客
虽然人工智能和机器学习现在这么火,但是我很惊讶地发现相关博主并没有那么多。可能是因为内容比较复杂,把有意义的部分整理出来需要花很大精力;也有可能是因为类似Quora这样的平台比较多,专家们回答问题更方便也不需要花太多时间做详细论述。
下面我会按照推特的关注数排序介绍一些博主,他们一直在做人工智能相关的原创内容,而不只是一些新闻摘要或者公司博客。
- Andrej Karpathy(推特关注数6.9万):http://karpathy.github.io
- i am trask(推特关注数1.4万):http://iamtrask.github.io
- Christopher Olah(推特关注数1.3万):http://colah.github.io
- Top Bots(推特关注数1.1万):http://www.topbots.com
- WildML(推特关注数1万):http://www.wildml.com
- Distill(推特关注数9千):https://distill.pub
- Machine Learning Mastery(推特关注数5千):http://machinelearningmastery.com/blog/
- FastML(推特关注数5千):http://fastml.com
- Adventures in NI(推特关注数5千):https://joanna-bryson.blogspot.de
- Sebastian Ruder(推特关注数3千):http://sebastianruder.com
- Unsupervised Methods(推特关注数1.7千):http://unsupervisedmethods.com
- Explosion(推特关注数1千):https://explosion.ai/blog/
- Tim Dettmers(推特关注数1千):http://timdettmers.com
- When trees fall…(推特关注数265):http://blog.wtf.sg
- ML@B(推特关注数80):https://ml.berkeley.edu/blog/
Medium平台上的作者
下面介绍到的是Medium上人工智能相关的顶级作者,按照2017年Mediumas的排行榜排序。
- Robbie Allen:https://medium.com/@robbieallen
- Erik P.M. Vermeulen:https://medium.com/@erikpmvermeulen
- Frank Chen:https://medium.com/@withfries2
- azeem:https://medium.com/@azeem
- Sam DeBrule:https://medium.com/@samdebrule
- Derrick Harris:https://medium.com/@derrickharris
- Yitaek Hwang:https://medium.com/@yitaek
- samim:https://medium.com/@samim
- Paul Boutin:https://medium.com/@Paul_Boutin
- Mariya Yao:https://medium.com/@thinkmariya
- Rob May:https://medium.com/@robmay
- Avinash Hindupur:https://medium.com/@hindupuravinash
书籍
市面上有许多关于机器学习、深度学习和自然语言处理等方面的书籍,我只列示了可以直接从网上免费获得或者下载的书籍。
机器学习
- Understanding Machine Learning From Theory to Algorithms:http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
- Machine Learning Yearning:http://www.mlyearning.org
- A Course in Machine Learning:http://ciml.info
- Machine Learning:https://www.intechopen.com/books/machine_learning
- Neural Networks and Deep Learning:http://neuralnetworksanddeeplearning.com
- Deep Learning Book:http://www.deeplearningbook.org
- Reinforcement Learning: An Introduction:http://incompleteideas.net/sutton/book/the-book-2nd.html
- Reinforcement Learning:https://www.intechopen.com/books/reinforcement_learning
自然语言处理
- Speech and Language Processing (3rd ed. draft):https://web.stanford.edu/~jurafsky/slp3/
- Natural Language Processing with Python:http://www.nltk.org/book/
- An Introduction to Information Retrieval:https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
数学
- Introduction to Statistical Thought:http://people.math.umass.edu/~lavine/Book/book.pdf
- Introduction to Bayesian Statistics:https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
- Introduction to Probability:https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
- Think Stats: Probability and Statistics for Python programmers:http://greenteapress.com/wp/think-stats-2e/
- The Probability and Statistics Cookbook:http://statistics.zone
- Linear Algebra:http://joshua.smcvt.edu/linearalgebra/book.pdf
- Linear Algebra Done Wrong:http://www.math.brown.edu/~treil/papers/LADW/book.pdf
- Linear Algebra, Theory And Applications:https://math.byu.edu/~klkuttle/Linearalgebra.pdf
- Mathematics for Computer Science:https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
- Calculus:https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
- Calculus I for Computer Science and Statistics Students:http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora
Quora已经成为人工智能和机器学习的重要资源,许多顶尖的研究人员会在上面回答问题。下面我列出了一些主要关于人工智能的话题,如果你想自定义你的Quora喜好,你可以选择订阅这些话题。记得去查看每个话题下的FAQ部分(例如机器学习下常见问题解答),你可以看到Quora社区里提供的一些常见问题列表。
- 计算机科学 (560万关注):https://www.quora.com/topic/Computer-Science
- 机器学习 (110万关注):https://www.quora.com/topic/Machine-Learning
- 人工智能 (63.5万关注):https://www.quora.com/topic/Artificial-Intelligence
- 深度学习 (16.7万关注):https://www.quora.com/topic/Deep-Learning
- 自然语言处理 (15.5 万关注):https://www.quora.com/topic/Natural-Language-Processing
- 机器学习分类(11.9万关注):https://www.quora.com/topic/Classification-machine-learning
- 通用人工智能(8.2万 关注):https://www.quora.com/topic/Artificial-General-Intelligence
- 卷积神经网络 (2.5万关注):https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493
- 计算语言学(2.3万关注):https://www.quora.com/topic/Computational-Linguistics
- 循环神经网络(1.74万关注):https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs
Reddit上的人工智能社区并没有Quora上那么活跃,但是还是有一些很不错的话题。相对于Quora问答的形式,Reddit更适合于用来跟踪最新的新闻和研究。下面是一些主要关于人工智能的Reddit话题,按照订阅人数排序。
- /r/MachineLearning (11.1万订阅):https://www.reddit.com/r/MachineLearning
- /r/robotics/ (4.3万订阅):https://www.reddit.com/r/robotics/
- /r/artificial (3.5万订阅):https://www.reddit.com/r/artificial/
- /r/datascience (3.4万订阅):https://www.reddit.com/r/datascience
- /r/learnmachinelearning (1.1万订阅):https://www.reddit.com/r/learnmachinelearning/
- /r/computervision (1.1万订阅):https://www.reddit.com/r/computervision
- /r/MLQuestions (8千订阅):https://www.reddit.com/r/MLQuestions
- /r/LanguageTechnology (7千订阅):https://www.reddit.com/r/LanguageTechnology
- /r/mlclass (4千订阅):https://www.reddit.com/r/mlclass
- /r/mlpapers (4千订阅):https://www.reddit.com/r/mlpapers
Github
人工智能社区的好处之一是大部分新项目都是开源的,并且能在GitHub上获取到。同样如果你想了解使用Python或者Juypter Notebooks来实现实例算法,GitHub上也有很多学习资源可以帮助到你。以下是一些GitHub项目:
- 机器学习(6千个项目):https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=✓
- 深度学习(3千个项目):https://github.com/search?q=topic%3Adeep-learning&type=Repositories
- Tensorflow (2千个项目):https://github.com/search?q=topic%3Atensorflow&type=Repositories
- 神经网络(1千个项目):https://github.com/search?q=topic%3Aneural-network&type=Repositories
- 自然语言处理(1千个项目):https://github.com/search?utf8=✓&q=topic%3Anlp&type=Repositories
播客
人工智能相关的播客数量在不断的增加,有些播客关注最新的新闻,有些关注教授相关知识。
- Concerning AI:https://concerning.ai
- his Week in Machine Learning and AI:https://twimlai.com
- The AI Podcast:https://blogs.nvidia.com/ai-podcast/
- Data Skeptic:http://dataskeptic.com
- Linear Digressions:https://itunes.apple.com/us/podcast/linear-digressions/id941219323
- Partially Derivative:http://partiallyderivative.com
- O’Reilly Data Show:http://radar.oreilly.com/tag/oreilly-data-show-podcast
- Learning Machines 101:http://www.learningmachines101.com
- The Talking Machines:http://www.thetalkingmachines.com
- Artificial Intelligence in Industry:http://techemergence.com
- Machine Learning Guide:http://ocdevel.com/podcasts/machine-learning
新闻订阅
如果你想追踪最新的新闻和研究的话,种类渐增的每周新闻是一个不错的选择:其中大部分都包含相同的内容,所以订阅两三个就足够。
- The Exponential View:https://www.getrevue.co/profile/azeem
- AI Weekly:http://aiweekly.co
- Deep Hunt:https://deephunt.in
- O’Reilly Artificial Intelligence Newsletter:http://www.oreilly.com/ai/newsletter.html
- Machine Learning Weekly:http://mlweekly.com
- Data Science Weekly Newsletter:https://www.datascienceweekly.org
- Machine Learnings:http://subscribe.machinelearnings.co
- Artificial Intelligence News:http://aiweekly.co
- When trees fall…:https://meetnucleus.com/p/GVBR82UWhWb9
- WildML:https://meetnucleus.com/p/PoZVx95N9RGV
- Inside AI:https://inside.com/technically-sentient
- Kurzweil AI:http://www.kurzweilai.net/create-account
- Import AI:https://jack-clark.net/import-ai/
- The Wild Week in AI:https://www.getrevue.co/profile/wildml
- Deep Learning Weekly:http://www.deeplearningweekly.com
- Data Science Weekly:https://www.datascienceweekly.org
- KDnuggets Newsletter:http://www.kdnuggets.com/news/subscribe.html?qst
科研会议
随着人工智能的普及,人工智能相关的科研会议数量也在不断增加。我只提了几个主要的会议,没列所有的。(当然会议并不是免费的!)
学术会议
- NIPS (Neural Information Processing Systems):https://nips.cc
- ICML (International Conference on Machine Learning):https://2017.icml.cc
- KDD (Knowledge Discovery and Data Mining):http://www.kdd.org
- ICLR (International Conference on Learning Representations):http://www.iclr.cc
- ACL (Association for Computational Linguistics):http://acl2017.org
- EMNLP (Empirical Methods in Natural Language Processing):http://emnlp2017.net
- CVPR (Computer Vision and Pattern Recognition):http://cvpr2017.thecvf.com
- ICCV (International Conference on Computer Vision):http://iccv2017.thecvf.com
专业会议
- O’Reilly Artificial Intelligence Conference:https://conferences.oreilly.com/artificial-intelligence/
- Machine Learning Conference (MLConf):http://mlconf.com
- AI Expo (North America, Europe, World):https://www.ai-expo.net
- AI Summit:https://theaisummit.com
- AI Conference:https://aiconference.ticketleap.com/helloworld/
研究论文
你可以在网上浏览或者搜索已经发布的学术论文。
arXiv.org的主题类别
arXiv 是较早的预印本库,也是物理学及相关专业领域中最大的,该数据库目前已有数学、物理学和计算机科学方面的论文可开放获取的达50多万篇。
- Artificial Intelligence:https://arxiv.org/list/cs.AI/recent
- Learning (Computer Science):https://arxiv.org/list/cs.LG/recent
- Machine Learning (Stats):https://arxiv.org/list/stat.ML/recent
- NLP:https://arxiv.org/list/cs.CL/recent
- Computer Vision:https://arxiv.org/list/cs.CV/recent
Semantic Scholar内搜索
Semantic Scholar是由微软联合创始人保罗·艾伦创立的艾伦人工智能研究所推出的学术搜索引擎
- Neural Networks (17.9万条结果):https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
- Machine Learning (9.4万条结果):https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
- Natural Language (6.2万条结果):https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
- Computer Vision (5.5万条结果):https://www.semanticscholar.org/search?q=%22computer%20vision%22&sort=relevance&ae=false
- Deep Learning (2.4万条结果):https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
- Andrej Karpathy开发的网站:http://www.arxiv-sanity.com/
教程
我另外单独有一篇详细的文章涵盖了我发现的所有的优秀教程内容:
- 超过150种最佳的机器学习、自然语言处理和Python教程:https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd7
小抄表
和教程一样,我同样单独有一篇文章介绍了许多种很有用的小抄表:
- 机器学习、Python和数学小抄表:https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6
通读完本篇文章,是不是对于如何查找关于人工智能领域的资料有了清晰的方向。资料很多,大多都是国外的网站,所以大家需要科学上网哟~~~
原文链接:
https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524
【本文是51CTO专栏机构大数据文摘的原创译文,微信公众号“大数据文摘( id: BigDataDigest)”】