【探究】八种支持机器学习模型训练的JavaScript框架

译文
开发 前端 机器学习
在本文章中,您将了解到不同的机器学习JavaScript框架,包括:DeepLearn.js、PropelJS、ML-JS、ConvNetJS、KerasJS、STDLib、Limdu.js和Brain.js。

[[221813]]

【51CTO.com快译】JavaScript开发人员大多倾向于寻找一些基于不同的机器学习算法、并可用于训练机器学习模型的JavaScript框架。我们在下面所罗列出的各种机器学习算法,都适用于本文将为您展示的八种可用于模型训练的JavaScript框架。 

  • 简单线性回归
  • 多变量线性回归
  • 逻辑回归
  • 朴素贝叶斯(Naive Bayesian)
  • K最近邻算法(K-nearest neighbor,KNN)
  • K-Means算法
  • 支持向量机(Support vector machine,SVM)
  • 随机森林
  • 决策树
  • 前馈神经网络(Feedforward neural network)
  • 深度学习网络

在本文中,您将分别概览到用于机器学习的不同JavaScript框架。它们分别是:

1.DeepLearn.js

Deeplearn.js是Google开发的、开源的机器学习JavaScript库。它可以被用于不同的目的,包括训练浏览器中的神经网络、理解机器学习(ML)模型、以及被用作教育目的等。您可以在推理模式中运行各种预训练的模型。开发者可以在Typescript(ES6 JavaScript)或ES5 JavaScript中编写代码。如想快速入门,您可以通过在HTML文件的head标签中包含以下的代码,并编写用于构建模型的JS程序。 

  1. <script src="https://cdn.jsdelivr.net/npm/deeplearn@latest"></script>  
  2. <!-- or -->  
  3. <script src="https://unpkg.com/deeplearn@latest"></script> 

2.PropelJS

Propel是一个JavaScript库,它为科学计算提供了一个支持GPU的、类似numpy(译者注:它是Python的一种开源的数值计算扩展)的基础架构。它可以被使用在NodeJS的各种应用以及浏览器中。

以下是为浏览器设置的代码: 

  1. <script src="https://unpkg.com/propel@3.1.0"></script> 

而下面则是被用到NodeJS应用的代码: 

  1. npm install propel  
  2. import { grad } from "propel"

PropelJS的文档链接是:http://propelml.org/docs/。它的GitHub页面为https://github.com/propelml/propel。

3.ML-JS

ML-JS为工作在NodeJS和各个浏览器环境中,提供了机器学习的多个工具。ML JS工具可以通过如下的代码进行设置:

  1. <script src="https://www.lactame.com/lib/ml/2.2.0/ml.min.js"></script> 

它能够支持以下的机器学习算法:

  • 无监督学习
    • 主成分分析(Principal component analysis,PCA)
    • K-Means聚类
  • 监督学习
    • 简单线性回归
    • 多变量线性回归
    • 支持向量机(SVM)
    • 朴素贝叶斯
    • K最近邻算法(KNN)
    • 偏最小二乘(Partial least squares,PLS)
    • 决策树:CART
    • 随机森林
    • 逻辑回归
  • 人工神经网络
    • 前馈神经网络

4.ConvNetJS

ConvNetJS是一个JavaScript库,它可以被用于在您的浏览器中,完全地训练各种深度学习的模型(神经网络)。这个库也能够被用在NodeJS的各种应用之中。

您可以从下载链接--http://cs.stanford.edu/people/karpathy/convnetjs/build/convnet-min.js 来获取ConvNetJS的缩减库,从而上手这个缩小版本的ConvNetJS。它的GitHub页面为https://github.com/karpathy/convnetjs/releases。如下是其对应的加载代码: 

  1. <script src="convnet-min.js"></script> 

我们进一步给出一些重要的参考页面的地址:

  • ConvNetJS的NPM软件包:https://www.npmjs.com/package/convnetjs
  • 入门文档:https://cs.stanford.edu/people/karpathy/convnetjs/started.html
  • 参考文档:https://cs.stanford.edu/people/karpathy/convnetjs/docs.html

5.KerasJS

使用KerasJS和支持GPU的WebGL,您可以在浏览器中运行Keras的模型。除了CPU模式,该模型也可以在Node.js中运行。Keras的GitHub页面为https://github.com/transcranial/keras-js。以下是可以在浏览器中运行的所有Keras的模型列表:

  • MNIST的基本转换(译者注:MNIST是一个入门级的计算机视觉数据集)
  • 经MNIST训练的卷积变分自编码器
  • 基于MNIST的辅助分类器生成对抗网络(AC-GAN)
  • 经ImageNet训练的50层残差网络(residual network)
  • 经ImageNet训练的Inception v3模型
  • 经ImageNet训练的DenseNet-121(极深网络)模型
  • 经ImageNet训练的SqueezeNet v1.1模型
  • 基于IMDB情感分类的双向长短期记忆网络(LSTM)

6.STDLib

STDLib是一个JavaScript库,它能够被用于构建高级的统计模型和各种机器学习库。它也可以被用于数据可视化与探索性数据分析的绘制和图形功能。

以下是与机器学习(ML)有关的各种相关库的列表:

  • 通过随机梯度下降的线性回归(@stdlib/ml/online-sgd-regression)
  • 通过随机梯度下降的二元分类(@stdlib/ml/online-binary-classification)
  • 自然语言处理(@stdlib/nlp)

7.Limdu.js

Limdu.js是一个针对Node.js的机器学习框架。它支持以下方面:

  • 二进制分类
  • 多标签分类
  • 特征工程(Feature engineering)
  • 支持向量机(SVM)

开发者可以使用如下的命令来安装limdu.js: 

  1. npm install limdu 

8.Brain.js

Brain.js是一套用于训练神经网络和朴素贝叶斯分类器的JavaScript库。您可以使用如下命令来设置Brain.js: 

  1. npm install brain.js 

开发者也可以使用以下代码,在浏览器中包含该库: 

  1. <script src="https://raw.githubusercontent.com/harthur-org/brain.js/master/browser.js"></script> 

如下的命令可以被用于安装朴素贝叶斯分类器: 

  1. npm install classifier 

总结

在本文中,您了解到了可用于在浏览器、以及Node.js应用中训练机器学习模型的不同JavaScript库。如果您有兴趣了解更多有关机器学习的文档,我们建议您去查看我们的机器学习文档集-- https://vitalflux.com/category/machine-learning/。

如果您觉得本文对您有所帮助,或者您对本文所提及的机器学习JavaScript框架有任何的疑问与建议,欢迎您在此留下评论或提出问题。

原文标题:8 Machine Learning JavaScript Frameworks to Explore,作者:Ajitesh Kumar

【51CTO译稿,合作站点转载请注明原文译者和出处为51CTO.com】

责任编辑:庞桂玉 来源: 51CTO
相关推荐

2020-03-26 08:00:00

机器学习人工智能AI

2020-08-10 15:05:02

机器学习人工智能计算机

2017-03-24 15:58:46

互联网

2022-03-28 09:00:00

SQL数据库机器学习

2021-11-27 05:03:09

框架深度学习

2017-07-07 14:41:13

机器学习神经网络JavaScript

2024-09-30 05:43:44

2018-10-11 10:37:31

JavaScript开源 机器学习

2024-12-26 00:46:25

机器学习LoRA训练

2024-11-04 00:24:56

2024-11-26 09:33:44

2018-11-07 09:00:00

机器学习模型Amazon Sage

2022-09-19 15:37:51

人工智能机器学习大数据

2018-07-10 08:40:36

JavaScript机器学习框架

2024-07-29 08:00:00

2018-05-04 08:20:39

机器学习深度学习人工智能

2021-04-12 09:00:00

机器学习深度学习技术

2021-04-22 08:00:00

人工智能机器学习数据

2020-01-02 14:13:01

机器学习模型部署预测

2019-05-07 11:18:51

机器学习人工智能计算机
点赞
收藏

51CTO技术栈公众号