Oracle性能优化之SQL优化【上】

数据库 Oracle
ORACLE 的解析器按照从右到左的顺序处理 FROM 子句中的表名,FROM 子句中写在最后的表 (基础表 driving table) 将被最先处理,在 FROM 子句中包含多个表的情况下, 你必须选择记录条数最少的表作为基础表。如果有 3 个以上的表连接查询, 那就需要选择交叉表 (intersection table) 作为基础表, 交叉表是指那个被其他表所引用的表。

[[216530]]

(1) 选择最有效率的表名顺序 (只在基于规则的优化器 (Oracle 有两种优化器:RBO 基于规则的优化器和 CBO 基于成本的优化器) 中有效): 

ORACLE 的解析器按照从右到左的顺序处理 FROM 子句中的表名,FROM 子句中写在***的表 (基础表 driving table) 将被***处理,在 FROM 子句中包含多个表的情况下, 你必须选择记录条数最少的表作为基础表。如果有 3 个以上的表连接查询, 那就需要选择交叉表 (intersection table) 作为基础表, 交叉表是指那个被其他表所引用的表。

(2) WHERE 子句中的连接顺序.: 

ORACLE 采用自下而上的顺序解析 WHERE 子句,根据这个原理,表之间的连接必须写在其他 WHERE 条件之前,那些可以过滤掉***数量记录的条件必须写在 WHERE 子句的末尾。

(3) SELECT 子句中避免使用 ‘ * ‘: 

ORACLE 在解析的过程中, 会将’*’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的,这意味着将耗费更多的时间。

(4) 减少访问数据库的次数: 

ORACLE 在内部执行了许多工作: 解析 SQL 语句,估算索引的利用率,绑定变量,读数据块等; 

(5) 在 SQL*Plus , SQL*Forms 和 Pro*C 中重新设置 ARRAYSIZE 参数,可以增加每次数据库访问的检索数据量, 建议值为 200。

(6) 使用 DECODE 函数来减少处理时间: 

使用 DECODE 函数可以避免重复扫描相同记录或重复连接相同的表。

(7) 整合简单, 无关联的数据库访问: 

如果你有几个简单的数据库查询语句, 你可以把它们整合到一个查询中 (即使它们之间没有关系) 

(8) 删除重复记录: 

***效的删除重复记录方法 (因为使用了 ROWID) 例子: 

DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID) 

FROM EMP X WHERE X.EMP_NO = E.EMP_NO); 

(9) 用 TRUNCATE 替代 DELETE: 

当删除表中的记录时,在通常情况下,回滚段 (rollback segments) 用来存放可以被恢复的信息。 如果你没有 COMMIT 事务, ORACLE 会将数据恢复到删除之前的状态 (准确地说是恢复到执行删除命令之前的状况) 而当运用 TRUNCATE 时, 回滚段不再存放任何可被恢复的信息。 当命令运行后,数据不能被恢复。 因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE 只在删除全表适用, TRUNCATE 是 DDL 不是 DML) 

(10) 尽量多使用 COMMIT: 

只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少:

COMMIT 所释放的资源: 

a. 回滚段上用于恢复数据的信息

b. 被程序语句获得的锁 

c. redo log buffer 中的空间 

d. ORACLE 为管理上述 3 种资源中的内部花费 

(11) 用 Where 子句替换 HAVING 子句: 

避免使用 HAVING 子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤。这个处理需要排序,总计等操作。如果能通过 WHERE 子句限制记录的数目,那就能减少这方面的开销。(非 oracle 中)on、where、having 这三个都可以加条件的子句中,on 是***执行,where 次之,having ***,因为 on 是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where 也应该比 having 快点的,因为它过滤数据后才进行 sum,在两个表联接时才用 on 的,所以在一个表的时候,就剩下 where 跟 having 比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是 where 可以使用 rushmore 技术,而 having 就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where 的作用时间是在计算之前就完成的,而 having 就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on 比 where 更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由 where 进行过滤,然后再计算,计算完后再由 having 进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里 

(12) 减少对表的查询: 

在含有子查询的 SQL 语句中, 要特别注意减少对表的查询。 例子: 

SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT 

TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604) 

(13) 通过内部函数提高 SQL 效率.: 

复杂的 SQL 往往牺牲了执行效率。 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的 

(14) 使用表的别名 (Alias): 

当在 SQL 语句中连接多个表时, 请使用表的别名并把别名前缀于每个 Column 上。这样一来, 就可以减少解析的时间并减少那些由 Column 歧义引起的语法错误。

(15) 用 EXISTS 替代 IN、用 NOT EXISTS 替代 NOT IN: 

在许多基于基础表的查询中, 为了满足一个条件,往往需要对另一个表进行联接. 在这种情况下,使用 EXISTS(或 NOT EXISTS) 通常将提高查询的效率。 在子查询中,NOT IN 子句将执行一个内部的排序和合并。 无论在哪种情况下,NOT IN 都是***效的 (因为它对子查询中的表执行了一个全表遍历)。 为了避免使用 NOT IN,我们可以把它改写成外连接 (Outer Joins) 或 NOT EXISTS. 

例子: 

(高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT ‘X’ FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB’) 

(低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB’) 

(16) 识别’低效执行’的 SQL 语句: 

虽然目前各种关于 SQL 优化的图形化工具层出不穷, 但是写出自己的 SQL 工具来解决问题始终是一个***的方法: 

SELECT EXECUTIONS , DISK_READS, BUFFER_GETS, 

ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio, 

ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run, 

SQL_TEXT 

FROM V$SQLAREA 

WHERE EXECUTIONS>0 

AND BUFFER_GETS > 0 

AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8 

ORDER BY 4 DESC;

(17) 用索引提高效率: 

索引是表的一个概念部分, 用来提高检索数据的效率,ORACLE 使用了一个复杂的自平衡 B-tree 结构。 通常, 通过索引查询数据比全表扫描要快。 当 ORACLE 找出执行查询和 Update 语句的***路径时, ORACLE 优化器将使用索引。 同样在联结多个表时使用索引也可以提高效率。 另一个使用索引的好处是,它提供了主键 (primary key) 的唯一性验证。那些 LONG 或 LONG RAW 数据类型,你可以索引几乎所有的列。通常, 在大型表中使用索引特别有效。 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率。 虽然使用索引能得到查询效率的提高, 但是我们也必须注意到它的代价。 索引需要空间来存储, 也需要定期维护,每当有记录在表中增减或索引列被修改时, 索引本身也会被修改, 这意味着每条记录的 INSERT , DELETE , UPDATE 将为此多付出 4 , 5 次的磁盘 I/O 。 因为索引需要额外的存储空间和处理, 那些不必要的索引反而会使查询反应时间变慢。定期的重构索引是有必要的: 

ALTER INDEX REBUILD  

责任编辑:庞桂玉 来源: ITPUB
相关推荐

2018-03-30 13:59:22

数据库SQL语句性能优化

2009-06-30 11:23:02

性能优化

2021-07-16 23:01:03

SQL索引性能

2017-08-25 15:28:20

Oracle性能优化虚拟索引

2021-07-26 18:23:23

SQL策略优化

2018-03-30 14:30:10

数据库SQL语句性能优化

2018-04-19 09:02:14

SQL ServerSQL性能优化

2020-05-27 11:55:47

Oracle SQL性能优化数据库

2021-07-29 14:20:34

网络优化移动互联网数据存储

2010-04-14 12:51:10

Oracle性能

2010-04-19 17:09:30

Oracle sql

2022-02-16 14:10:51

服务器性能优化Linux

2021-11-29 11:13:45

服务器网络性能

2019-12-13 10:25:08

Android性能优化启动优化

2017-09-05 09:02:06

Oraclenot null优化

2009-10-20 18:32:25

Oracle 10g

2011-06-14 14:17:23

性能优化系统层次

2013-09-17 10:32:08

Android性能优化数据库

2011-06-14 11:14:10

性能优化代码

2023-04-10 11:18:38

前端性能优化
点赞
收藏

51CTO技术栈公众号