图片来源于网络
算法相关人才在市场上呈现出严重的供需不平衡的状态,一个人同时被四五家一线互联网企业或是明星独角兽争夺是常态,而各家给到猎头的需求更是只要是算法类人才,哪怕是刚刚毕业不满一年也可以推荐,这意味着哪怕是初级算法工程师,通过猎头获取的人才每个人的招聘费用也在 5 万元左右,而显然各家 HR 都认为这笔钱花得划算,从侧面也说明算法人才的抢手程度。
在各类招聘企业当中,第一梯队的是 Google、Microsoft、Facebook 等世界知名企业的 Global 及本土研究院的招聘,这类企业在口碑、薪酬和技术等多个方面都是首屈一指;
第二梯队就是 BAT 三家,靠着巨大的体量和资金支持在市面上横扫各类人才;
而其他几类公司的实力也不容小觑:以 TMD 三家为代表的一线互联网企业都给出了更高的薪酬与 BAT 竞争,其中今日头条以日新月异的发展速度和高出市场 30% 的薪酬包为筹码具有很强的竞争力。
而在 AI 细分领域兴起的各类新兴独角兽也受到了人才和资本的青睐,包括图像领域的 Face++ 、商汤、依图和云从,芯片领域的深鉴、地平线、寒武纪和比特大陆,语音领域的科大讯飞等等;
新老牌硬件厂商也加入了人才争夺的战争,华为、中兴、海康威视、大疆几家基本对算法类人才采用大包大揽的政策,不仅高薪招聘上层业务算法的相关人才,底层硬件加速的人才薪酬也相应水涨船高;
而 Intel、IBM Watson 等老牌外企巨头也雄踞一方,其下的 Research Lab 靠着不低的薪酬和相对宽松的工作氛围同样笼络住了一批人才。
01校招薪酬对比
为了吸引人才,各厂纷纷开出了天价薪酬,先来看今年校招的算法类大 SP 的 offer,这都是笔者从各个渠道了解到的今年各厂给到的最高 offer(各位读者中不乏认识比表格中薪资更高的大牛):
企业薪酬岗位候选人背景
除此之外,可以对比一下今年普通研发和算法工程师在薪酬上的差别:
企业普通研发岗算法研发岗
从以上数据可以很明显地看出,算法类岗位相比其他岗位在薪酬上至少高出 20%,对于顶级人才更是不遗余力地通过高薪和户口政策来吸引。一些博士毕业的人才可能初入职场就跨过了所谓月薪 3 万的大坎儿,直接「走上人生巅峰」。
根据市场反馈,硕士毕业 3 年的机器学习算法专家薪资算上股票收入普遍可以达到年 60-80 万,而硕士毕业 8 年/博士毕业 5 年如果发展到算法总监的岗位,薪资普遍在 150万以上。
而不同方向的算法岗位起薪也不尽相同。排序、广告、推荐等应用类算法,由于会需要更多的实际项目经验,所以在起薪上不如 NLP /图像识别高,但随着工作经验的增长,薪酬可以基本追平,而这更要靠个人的努力和发展机遇。
NLP 和图像识别方向的算法,由于在安防、智能客服、自动驾驶、机器人等多个高科技领域均有应用场景,又因为国内人才储备不足,因此刚刚毕业的硕士博士也可以有很高的薪酬,同时直接参与甚至负责核心项目。
值得一提的是,由于微软亚洲研究院在这两个领域的提前布局,内部有多名专家进行了超过 10 年的研究,产生了大量的研究成果,这些专家现在是市场上顶端的人才,如果挖角至少会有 300-400 万的薪酬收入。
02未来趋势预测
毫无疑问,2017 年是互联网人工智能领域热火朝天的一年,而人工智能也一定会成为未来发展的主流方向之一,但这是否就意味着 AI 相关的算法人才会一直受到如此青睐呢?笔者斗胆做出预测:
1、AI 算法岗位的数量在 5 年内会持续增加,会有更多的公司参与到 AI 的这次浪潮当中。同时,人工智能也会不断结合其他领域,在更多方面展现出优秀的科技成果。
例如华大基因利用算法进行的 DNA 分析;依图切入医疗领域,通过算法来辅助病症诊断;还有各个大型企业在基础设施上加入算法,实现了数据中心的自动检测和故障维护等等。这是技术人才在进行职业规划时不可忽略的一个趋势。
2、但也不可否认的是,算法类人才的数量也会在未来 5 年内出现爆发式增长。如果说过去几年只有十几个重点大学设立了相关的研究院并且每年有 20 余人(硕士+博士)进行细分领域的研究的话,这个数量在 2016 年开始猛增。几乎所有的重点大学都设立了相关的研究机构,而申请人数也是多了数倍不止。根据数据显示,人工智能相关的大学研究院已经超过了 60 个。
3、技术最终要与产品相结合。在算法模型日臻完善的条件下,最终具有竞争力的技术人才一定要拥有丰富的产品或是项目经验,能够解决实际问题是绝大多数企业招聘时的基本要求。这个道理同样适用于企业,一个人工智能企业只有拥有成熟的可盈利的产品才能最终在激烈的竞争中存活下来。