Python脚本分析CPU使用情况

开发 后端
在这篇文章中,我将讨论一个工具,用以分析Python中CPU使用情况。CPU分析是通过分析CPU执行代码的方式来测量代码的性能,以此找到代码中的不妥之处,然后处理它们。

在这篇文章中,我将讨论一个工具,用以分析Python中CPU使用情况。CPU分析是通过分析CPU执行代码的方式来测量代码的性能,以此找到代码中的不妥之处,然后处理它们。

接下来我们将看看如何跟踪Python脚本使用时CPU使用情况,重点关注以下几个方面:

    1、cProfile

    2、line_profiler

    3、pprofile

    4、vprof

测量CPU使用率

对于这篇文章,我将主要使用与内存分析中使用脚本相同的脚本,具体如下:

另外,请记住,在PyPy2中,您需要使用与之配合的pip版本:

并且其他依赖项也将被安装:

cProfile

在讨论CPU分析时,最常用的工具之一是cProfile,主要是因为它内置在CPython2和PyPy2中。这是一个确定性的分析器,意味着在运行程序时会收集一组统计数据,例如我们代码的各个部分的执行次数或执行时间。此外,cProfile在系统上的开销比其他内置的分析器(配置文件)要低。

CPython2的用法很简单:

如果您使用PyPy2:

其输出如下:

即使使用这个文本输出,很容易看到我们的脚本多次调用了list.append方法。

如果我们使用gprof2dot,我们可以以图形的方式看到cProfile输出。要使用它,我们必须首先安装graphviz,之后是一些依赖包,***在Ubuntu上使用如下命令:

再次运行脚本:

我们得到以下output.png文件:

这样更容易看到一切。我们来仔细看看它的输出。您可以看到脚本中的函数调用如下:

    1、***行:Python文件名,行号和方法名称

    2、第二行:代码块占用全部时间的百分比

    3、第三行:括号中,方法本身占全部时间的百分比

    4、第四行:调用函数的次数

例如,在顶部的第三个红色方块中,方法primes占用了98.28%的时间,其中65.44%的内容在其中进行,调用了40次。其余的时间花在Python中的list.append(22.33%)和range(11.51%)中。

作为一个简单的脚本,我们只需要重写我们的脚本,具体的如下所示:

如果我们使用CPython2测量我们脚本的时间,

还有PyPy2:

我们通过使用PyPy2的CPython2和3.1X获得了不错的效果,下面是cProfile的调用流程图:

您还可以以编程方式使用cProfile,例如:

这在某些情况下很有用,例如多进程性能测量

line_profiler

此分析器在行级提供关于工作负载的信息。它使用Cython在C中实现,并将其与cProfile进行比较时发现其具有较小的开销。

源代码可以在这里找到,也可以在这里找到PyPI页面。与cProfile相比,它具有一样的开销,不过却要花费12倍的时间来获取配置文件。

要使用它,您需要先通过pip添加它:pip install pip install Cython ipython == 5.4.1 line_profiler(CPython2)。这个分析器的一个主要缺点是它不支持PyPy。

就像使用memory_profiler一样,您需要在要分析的函数中添加一个装饰器。在我们的例子中,您需要在03.primes-v1.py中定义我们的primes函数之前添加@profile。然后调用它:

你将得到如下输出:

我们看到,重复调用list.append的两个循环花了最多的时间。

pprofile

根据作者说明,pprofile是一个“线程测量和统计的纯python分析器”。

它受到line_profiler的启发,修复了很多缺点,但是由于它完全用Python编写,所以它也可以与PyPy成功使用。与cProfile相比,使用CPython时的分析时间要多28倍,而使用PyPy时,分析时间要多10倍,而且细节水平更加细化。

我们也支持PyPy!除此之外,它支持剖析线程,这在各种情况下可能会很方便。

要使用它,您需要先通过pip添加它:pip install pprofile(CPython2)/ pypy -m pip install pprofile(PyPy),然后调用它:

输出与我们以前看到的不同,我们得到如下结果:

我们现在可以更详细地看到一切。让我们来看看输出。您可以获得脚本的整个输出,并且在每行之前,您可以看到对其进行的调用次数,运行时间(秒),每次调用的时间和全局时间的百分比,pprofile为我们的输出添加了额外的行(如第44和50行,以(call)开头)与累积指标。

再次,我们看到,重复调用list.append的两个循环花了我们脚本中最多的时间。

vprof

vprof是一个Python分析器,为各种Python程序特性(如运行时间和内存使用)提供丰富的交互式可视化。它是一个基于Node.JS的图形化的显示在网页中的结果。

使用它,您可以看到与Python脚本相关的以下一个或全部:

    1、CPU使用图

    2、代码分析

    3、内存图

    4、代码热图

要使用它,您需要先通过pip添加它:pip install vprof(CPython2)/ pypy -m pip install vprof(PyPy),然后调用它:

在CPython2上,显示代码散热图(***个调用如下)和代码分析(下面的第二个调用):

在PyPy上,显示代码散热图(***个调用如下)和代码分析(下面的第二个调用):

在每种情况下,您将看到代码散点图的以下内容

以及代码分析的以下内容。

 

结果以图形方式看到,我们可以悬停鼠标或单击每行以获取更多信息。再次,我们看到,重复调用list.append的两个循环花了我们脚本中最多的时间。 

责任编辑:庞桂玉 来源: 马哥Linux运维
相关推荐

2014-04-24 16:26:31

UbuntuUbuntu 磁盘Linux基础

2010-10-14 16:10:28

MySQL排序

2019-09-17 12:13:05

BashLinuxCPU

2022-07-13 14:26:26

Linux

2013-07-23 06:56:12

Android内存机制APP内存使用情况Android开发学习

2022-06-09 08:07:15

Shell脚本Linux

2019-06-24 08:53:01

Bash脚本Linux系统运维

2020-06-17 14:10:01

Python内存程序

2010-05-12 15:14:59

subversion管

2015-11-09 15:32:34

TorTor网络隐私网络

2018-07-06 14:52:49

Docker容器云服务

2017-01-18 21:57:14

2019-11-27 14:38:41

Windows 10Firefox高CPU

2010-11-16 11:40:04

Oracle查询表空间

2009-12-14 17:25:20

Linux操作系统

2020-12-07 18:19:46

Common Lisp方言编程

2009-02-03 09:49:00

FTP空间共享

2009-06-30 14:11:00

Hibernate缓存

2010-02-03 17:16:58

Linux内存使用

2010-06-02 11:06:15

Linux 内存监控
点赞
收藏

51CTO技术栈公众号