一文搞懂RNN(循环神经网络)基础篇

人工智能 深度学习
本文讲解了RNN最基本的几个知识点,能够帮助大家直观的感受RNN和了解为什么需要RNN,后续总结它的反向求导知识点。

[[211628]]

1.神经网络基础

神经网络可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y,结构图如下:

 

将神经网络模型训练好之后,在输入层给定一个x,通过网络之后就能够在输出层得到特定的y,那么既然有了这么强大的模型,为什么还需要RNN(循环神经网络)呢?

 2.为什么需要RNN(循环神经网络)

他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。

比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列; 当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。

以nlp的一个最简单词性标注任务来说,将我 吃 苹果 三个单词标注词性为 我/nn 吃/v 苹果/nn。

那么这个任务的输入就是:

我 吃 苹果 (已经分词好的句子)

这个任务的输出是:

我/nn 吃/v 苹果/nn(词性标注好的句子)

对于这个任务来说,我们当然可以直接用普通的神经网络来做,给网络的训练数据格式了就是我-> 我/nn 这样的多个单独的单词->词性标注好的单词。

但是很明显,一个句子中,前一个单词其实对于当前单词的词性预测是有很大影响的,比如预测苹果的时候,由于前面的吃是一个动词,那么很显然苹果作为名词的概率就会远大于动词的概率,因为动词后面接名词很常见,而动词后面接动词很少见。

所以为了解决一些这样类似的问题,能够更好的处理序列的信息,RNN就诞生了。

 3.RNN结构

首先看一个简单的循环神经网络如,它由输入层、一个隐藏层和一个输出层组成:

 

不知道初学的同学能够理解这个图吗,反正我刚开始学习的时候是懵逼的,每个结点到底代表的是一个值的输入,还是说一层的向量结点集合,如何隐藏层又可以连接到自己,等等这些疑惑~这个图是一个比较抽象的图。

我们现在这样来理解,如果把上面有W的那个带箭头的圈去掉,它就变成了最普通的全连接神经网络。

x是一个向量,它表示输入层的值(这里面没有画出来表示神经元节点的圆圈);s是一个向量,它表示隐藏层的值(这里隐藏层面画了一个节点,你也可以想象这一层其实是多个节点,节点数与向量s的维度相同);

U是输入层到隐藏层的权重矩阵,o也是一个向量,它表示输出层的值;V是隐藏层到输出层的权重矩阵。

那么,现在我们来看看W是什么。循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。

我们给出这个抽象图对应的具体图:

 

我们从上图就能够很清楚的看到,上一时刻的隐藏层是如何影响当前时刻的隐藏层的。

如果我们把上面的图展开,循环神经网络也可以画成下面这个样子:

 

现在看上去就比较清楚了,这个网络在t时刻接收到输入  之后,隐藏层的值是  ,输出值是  。关键一点是,  的值不仅仅取决于  ,还取决于  。我们可以用下面的公式来表示循环神经网络的计算方法:

用公式表示如下:

 

 4.总结

好了,到这里大概讲解了RNN最基本的几个知识点,能够帮助大家直观的感受RNN和了解为什么需要RNN,后续总结它的反向求导知识点。

***给出RNN的总括图:

 

 

 

责任编辑:庞桂玉 来源: 36大数据
相关推荐

2019-11-19 08:00:00

神经网络AI人工智能

2018-07-29 06:46:07

神经网络RNN循环神经网络

2020-08-14 10:20:49

神经网络人工智能池化层

2024-06-05 11:43:10

2017-04-17 13:10:09

神经网络人工智能网络

2020-12-08 20:20:15

神经网络深度学习机器学习

2023-09-17 23:09:24

Transforme深度学习

2022-05-05 16:47:24

Docker网络空间容器

2024-04-12 12:19:08

语言模型AI

2017-06-19 15:12:30

Uber神经网络事件预测

2022-04-22 12:36:11

RNN神经网络)机器学习

2019-11-06 17:00:51

深度学习神经网络人工智能

2022-03-24 08:51:48

Redis互联网NoSQL

2021-07-28 10:41:21

python

2021-03-22 10:05:59

netstat命令Linux

2023-09-15 12:00:01

API应用程序接口

2023-09-08 08:20:46

ThreadLoca多线程工具

2019-03-26 19:00:02

神经网络AI人工智能

2017-07-06 17:03:45

BP算法Python神经网络

2022-06-17 10:24:57

IaC
点赞
收藏

51CTO技术栈公众号