阿里双11数据库计算存储分离与离在线混布

数据库
如何做到支撑32.5万笔/秒交易的同时降低数据库成本?为了解决诸多如成本,调度效率等问题,2017年首次对数据库实现计算存储分离;计算存储分离后,再将计算节点与离线资源混布,达到节省大促成本的目的。

“如何做到支撑32.5万笔/秒交易的同时降低数据库成本?”

一、背景

随着阿里集团电商、物流、大文娱等业务的蓬勃发展,数据库实例以及数据存储规模不断增长,在传统基于单机的运维以及管理模式下,遇到非常多的困难与挑战,主要归结为:

  • 机型采购与预算问题

在单机模式下计算资源(CPU和内存)与存储资源(主要为磁盘或者SSD)存在着不可调和的冲突;计算与存储资源绑定紧密,无法进行单独预算。数据库存储时,要么计算资源达到瓶颈,要么是存储单机存储容量不足。这种绑定模式下,注定了有一种资源必须是浪费的。

  • 调度效率问题

在计算与存储绑定的情况下,计算资源无法做无状态调度,导致无法实现大规模低成本调度,也就无法与在大促与离线资源进行混布。

  • 大促成本问题

在计算资源无法做到调度后,离线混布就不再可能;为了大促需要采购更多的机器,大促成本上涨严重。

因此,为了解决诸多如成本,调度效率等问题,2017年***对数据库实现计算存储分离;计算存储分离后,再将计算节点与离线资源混布,达到节省大促成本的目的。 

2017年数据库计算存储分离,

使得数据库进行大规模无状态化容器调度成为可能!

使得数据库与离线业务混布成为可能!

使得低成本支持大促弹性成为可能!

在高吞吐下,总存储集群整体RT表现平稳,与离线资源联合***发力,最终***完成2017年“11.11”大促10%的交易支撑;

并为明年全面拥抱计算存储分离与大规模离在线混布,打下坚实的基础。

二、计算存储分离

在所有业务中,数据库的计算存储分离最难,这是大家公认的。因为数据库对于存储的稳定性以及单路端到端的时延有着***的要求:

 1.   存储稳定性

在分布式存储的稳定性方面,我们做了非常多的有意探索,并且逐一落地。这些新技术的落地,使得数据库计算存储分离成为可能:

  • 单机failover

单机failover我们做到业界的***,5s内完成fo,对整体集群的影响在4%以内(以集群规模24台为例,集群机器越多,影响越小)。另外,我们对分布式存储的状态机进行加速优化,使得基于paxos的选举在秒级内进行集群视图更新推送。

  • 长尾时延优化

计算存储分离后,所有的IO都变成了网络IO,因此对于单路IO时延影响的因素非常多,如网络抖动,慢盘,负载等,而这些因素也是不可避免的。我们设计了“副本达成多数写入即返回的策略(commit majority feature)”,能够有效地使长尾时延抖动做到合理的控制,以满足业务的需求。

以下是commit majority feature开起前后的效果对比。其中“蓝色”为优化后的长尾时延,“红色”为优化前长尾时延,效果非常显著。

  • 流控

我们实现了基于滑动窗口的流控功能,使得集群后台活动(如backfill和recovery)能根据当前的业务流量进行自适配的调整,在业务与后台数据恢复之间做到***平衡。

一般如果集群后端活动太低,会影响数据恢复,这会提高多盘故障的概率,降低了数据的可靠性。我们经过优化后,通过滑动窗口机制,做到了前后端数据写入的速动,在不影响业务写入的情况下,尽***可能提高数据恢复速度,保证多副本数据的完整性。

提高数据重平衡的速度,也是为了保证整个集群的性能。因为一出现数据倾斜时,部分盘的负载将变大,从而会影响整个集群的时延和吞吐。

流控效果如下: 

  • 高可用部署

在高可用部署上,我们引入的故障域的概念。多个数据副本存储在多个故障域,分布到至少4个RACK以上的机架上,用于保障底层机柜电源以及网络交换设备引起的故障等。

为了能够更好的理解数据副本存储位置(data locality),需要知道数据散射度(scatter width)的概念。怎么来理解数据散射度?

举个例子:我们定义三个copy set(存放的都是不同的数据):{1,2,3},{4,5,6},{7,8,9}。任意一组copy set中存放的数据没有重复,也就是说一份数据的三个副本分别放置在:{1,4,7}或者{2,5,8}或者{3,6,9}。那么这个时候,其数据散射度远小于随机组合的C(9,3)。

随机组合时,任意3台机器Down机都会存在数据丢失。而采用此方案后,只有当{1,4,7}或者{2,5,8}或者{3,6,9}其中的任意一个组合不可用时,才会影响高可用性,才会有数据丢失。

综上可知,我们引入copy set的目标就是尽量的降低数据散射度“S“。下图中两组replica set,其中每一组的三个副本分别放置到不同的RACK中。

我们的优化还有很多,这里不再一一列举。

 2.    数据库吞吐优化

当所有的IO都变成网络IO后,我们要做的就是如何减少单路IO的延迟,当然这个是分布式存储以及网络要解的问题。

分布式存储需要优化自身的软件stack以及底层SPDK的结合等。

而网络层则需要更高带宽以及低时延技术,如25G TCP或者25G RDMA,或者100G等更高带宽的网络等。

但是我们可以从另外一个角度来考虑问题,如何在时延一定的情况下,提高并发量,从而来提高吞吐。或者说在关键路径上减少IO调用的次数,从而从某种程度上提高系统的吞吐。

大家知道,影响数据库事务数的最关键因素就是事务commit的速度,commit的速度依赖于写REDO时的IO吞吐。所谓的REDO也就是大家熟知的WAL(Write Ahead Log)日志。

在脏数据flush回存储时,日志必须先落地,这是因为数据库的Crash Recovery是重度以来于此的。在recovery阶段,数据库先利用redo进行roll forward;再利用undo进行roll backward,***再撤销用户未提交的事务。

因此,存储计算分离下,要想在单路IO时延一定时提高吞吐,就必须要优化commit提交时的效率。我们通过优化redo的写入方式,让整个提高吞吐100%左右,效果如下: 

另外,也可以优化redo group commit的大小,结合底层存储stripe能力,做并发与吞吐优化。

备注:”D13”是一种已经做过raid的SATASSD

 3.    数据库原子写

在数据库内存模型中,数据页通常是以16K做为一个bufferpage来管理的。当内核修改完数据之后,会有专门的“checkpoint”线程按一定的频率将Dirty Page flush到磁盘上。我们知道,通常os的page cache是4K,而一般的文件系统block size也是4K。所以一个16k和page会被分成4个4k的os filesystem block size来存储,物理上不能保证连续性。

那么会带来一个严重的问题,就是当fsync语义发出时,一个16k的pageflush,只完成其中的8k,而这个时候client端crash,不再会有重试;那么整个fsync就只写了一半,fsync语义被破坏,数据不完整。上面的这个场景,我们称之为“partial write”。

对于MySQL而言,在本地存储时,使用Double Write Buffer问题不大。但是如果底层变成网络IO,IO时延变高时,会使MySQL的整体吞吐下降,而Double Write Buffer会加重这个影响。

我们实现了原子写,关闭掉Double Write Buffer,从而在高并发压力及高网络IO时延下,让吞吐至少提高50%以上。

4.    网络架构升级

分布式存储,对于网络的带宽要求极高,我们引入了25G网络。高带宽能更好的支持阿里集团的大促业务。另外,对于存储集群后台的活动,如数据重平衡以及恢复都提供了有力的保障。 

三、离在线混布

计算存储分离后,离在线混布成为可能;今年完成数据库离在线混布,为2017年大促节省了计算资源成本。

在与离线混布的方案中,我们对数据库与离线任务混跑的场景进行了大量的测试。

实践证明,数据库对时延极度敏感,所以为了达到数据库混布的目的,我们采用了以下的隔离方案: 

  • CPU与内存隔离技术

CPU的L3是被各个核共享的,如果在一个socket内部进行调度,会对数据库业务有抖动。因此,在大促场景下,我们会对CPU进行独立socket 绑定,避免L3 cache干扰;另外,内存不超卖。当然,大促结束后,在业务平峰时,可以择机进行调度和超卖。 

  • 网络QOS

我们对数据库在线业务进行网络打标,NetQoS中将数据库计算节点的所有通信组件加入到高优先级group中。

  • 基于分布式存储的弹性效率

基于分布式存储,底层分布式存储支持多点mount,用于将计算节点快速弹性到离线机器。

另外,数据库Buffer Pool可以进行动态扩容。大促ODPS任务撤离,DB实例Buffer Pool扩容;大促结束后,Buffer Pool回缩到平峰业务时的大小。

以下是今年离在线混布的部署图: 

四、双11大促求证

 我们拿了其中一个中等压力的数据库的业务,其吞吐达到将近3w tps,RT在1ms以内,基本上与本地相当,很好的支撑了2017年大促。

 这就是我们今年所做的诸多技术创新的结果。

 

五、展望

目前我们正在进行软硬件结合(RDMA,SPDK)以及上层数据库引擎与分布式存储融合优化,性能将会超出传统SATA SSD本地盘的性能。

RDMA和SPDK的特点就是kernel pass-by。未来,我们数据库将引入全用户态IO Stack,从计算节点到存储节点使用用户态技术,更能充分满足集团电商业务对高吞吐低时延的***要求。

下面是我们进行测试的一组数据,其中本地用的是SATA SSD,并且做了raid,但是其性能略低于基于RDMA和SPDK的分布式存储。

这些网络和硬件技术的发展,将会给“云计算”带来更多的可能性,也会给真正的“云计算”新的商业模式带来更多憧憬,而我们已经在这条阳光的大道上。 

欢迎有更多的存储及数据库内核专家一起参与进来,一起携手迈进未来。 

【引用】

[1] Copysets:Reducing the Frequency of Data Loss in Cloud Storage

[2] CRUSH: Controlled,Scalable, Decentralized Placement of Replicated Data  

责任编辑:庞桂玉 来源: 阿里巴巴数据库技术
相关推荐

2017-12-07 15:07:28

阿里巴巴数据库技术架构演进

2017-09-06 16:31:55

阿里巴巴

2018-01-23 10:55:07

阿里数据库技术双11

2017-11-28 10:23:24

阿里双11

2018-11-07 09:34:21

阿里数据库变迁

2019-01-15 18:03:54

数据库运维 技术

2016-11-10 19:24:07

国美双11

2018-07-13 09:20:30

SQLite数据库存储

2013-11-12 09:50:55

阿里双11数据

2020-06-23 08:15:13

计算存储分离

2012-11-19 11:13:22

IBMdw

2018-05-25 09:31:00

数据存储高可用

2018-02-24 19:37:33

Java8数据库中间件

2015-10-22 16:26:59

MySQL数据库双主配置

2021-05-29 16:03:12

阿里云PolarDB数据库

2021-05-29 11:32:21

阿里云数据库PolarDB

2020-11-10 11:01:38

“双11”阿里人工智能

2022-12-15 09:44:29

数据库利器

2021-06-11 09:21:58

缓存数据库Redis
点赞
收藏

51CTO技术栈公众号