大数据如何有序地“变废为宝”

大数据
近年来,数字经济已成为带动经济社会发展的重要动力。无论是利用数据赚钱也好,还是希望做“高大上”的公共服务、社会治理改善也罢,大家都面临一个法律上的问题:如何保护数据?数据的权益归谁所有?

近年来,数字经济已成为带动经济社会发展的重要动力。无论是利用数据赚钱也好,还是希望做“高大上”的公共服务、社会治理改善也罢,大家都面临一个法律上的问题:如何保护数据?数据的权益归谁所有?本文提出5个观点,供各方思考和讨论。

大数据如何有序地“变废为宝”

 

***、大数据需要处理

在大数据时代,任何数据均具有潜在的价值。过去,人们重复利用的数据资源主要是人类观察、思考、创作完成的成果,如文章、文件、论文、著作等。如今,人类可以利用各种机器运行轨迹、人类活动记录、自然界变化观测等信息。过去需要大量观察访谈、调查统计、测量等完成的东西,现在可以借助计算机系统、各种数据采集器快速完成,并通过大数据分析工具实现全样本、自动化处理和分析。过去,没有人在意自己的行为轨迹,也无法记录大量的事件和过程,它们可以说作为“垃圾”被自觉或不自觉地扔掉了。现在,数据技术使人类具有“变废为宝”的能力,大数据技术可以在浩瀚的数据海洋中淘到“宝贝”。

因此,数据正在成为人类可拥有和控制的资源。大数据正在提供新的研究范式,帮助世人重新认识宇宙、物质、生命和社会,并在此基础上带来科技技术、管理决策、社会发展的巨大变革。就此而言,数据利用秩序有望成为未来社会的一大基础秩序。

第二、传统的财产权体系并不适合

如果说所有权(排他支配权)是构筑物质资源利用秩序的法律工具,那它是否可以移植到数据世界并用来建构数据的利用秩序呢?答案是否定的。所有权是对特定物的排他利用权利体系,而数据的非物质性导致其很难实现排他使用。因此,数据天然地不适合于所有权体系。

第三、在保持数据产品开放性和权益保护上维系平衡

数据从原生数据到有价值的数据产品需要投入,这不仅仅是劳动投入,而且还包括资本投入。只有当这些投入得到足够的回报时,才有人愿意从事数据的收集、处理和加工,将数据转化为产品或服务。这里面,解决数据产品制作者的激励问题,是数据赋权要解决的核心问题。

一般认为,即便是数据产品,也要保持社会公众对该产品的可接触或可学习的公共属性。由此,数据产品的制作者权利应当包括自己使用和许可他人使用的权利,或者利用数据提供服务的权利,同时有权制止他人出于商业目的而使用相关数据产品的权利。

这种基于对于数据分析加工劳动而取得的数据使用,属于一种新类型财产权,可以称之为数据使用权。区别于传统物权的是,它不是对数据的支配权;区别于传统知识产权的是,它并不要求***性或创新性。这样,就可以给数据产品制作者实现其收集和加工数据的激励,促进数据产品的生产和流通,满足社会对数据产品的需要。

第四、数据来源方的利益要有保护

在大数据环境下,一切数据皆有源。当数据来源于个人或者是对个人的描述时,就进入了个人数据(个人信息)范畴。隐私保护是个人数据保护的重要组成部分。在这方面,国际社会关于个人数据使用的总体原则是合法、正当和必要原则,以不侵犯个人尊严或自由等基本权益,尤其是隐私利益为基本限制。同时,个人信息的收集和使用必须尊重个人权利,必须确保个人可干预(更正、删除等)。

除了来源于个人外,企业数据还需要获得其他企业和社会组织的数据。除非这些数据是处于可供他人自由获取的公开状态,否则取得这些数据就需要获得数据实际控制人的同意,而不能够随意抓取、窃取或采取其他非法手段获得。

大数据应用最关键的是取得尽可能大而全的数据,但这一过程必须合法合规,其中最为重要的是尊重和保护个人信息权益。由此,数据利用秩序归根结底是要建立数据来源方(原材料提供者)到收集加工制作方(制作者)再到数据使用方(消费者)有关于数据权利和义务配置秩序。在保护各方权益的前提下,尽量保持数据开放性和流通性,使数据得到社会化的利用,实现数据的真正价值。

第五、数据分享和利用要有激励

在数据可控制的情形下,要让人们把掌握的数据拿出来分享和利用就需有激励,必须创制数据社会化利用的良性机制和秩序。由于数据本身需要保持一定公共性,赋予任何主体对数据和数据产品的绝对支配权都背离发展理念,因而数据赋权需要坚持信息自由流动。

总之,数据总是处于不断脱离原来主体而流动的过程中。正是因为这样的流动,数据才能产生更多的价值。但与此同时,脱离主体也意味着原主体丧失对数据的控制。因此,既保持数据的自由流动性,又维护每个主体在数据上的利益,是一个有待深入思考的法律难题。一个基本的原则可以明确:创制和维护数据利用秩序是大数据应用的前提,是大数据战略得以实施的根本问题。

责任编辑:赵宁宁 来源: 解放日报
相关推荐

2012-09-11 11:29:22

大数据云计算

2019-10-23 14:51:49

大数据存储技术

2024-06-05 09:17:31

Python数据清洗开发

2019-06-24 15:11:00

大数据SEO优化搜索引擎

2017-07-06 15:52:22

大数据数据分层数据仓库

2019-07-19 15:29:50

人工智能大数据

2021-03-08 10:18:40

大数据互联网大数据应用

2020-06-29 18:54:39

大数据新发地疫情

2015-08-21 10:38:26

DaaS

2018-10-18 09:05:31

数据泄露机房

2015-10-28 10:55:36

2013-03-20 10:31:14

大数据数据云服务

2015-08-20 09:39:38

大数据

2015-11-18 09:56:24

数据中心监控

2019-09-27 12:44:03

数据建模企业数据存储

2016-08-31 22:02:15

2015-07-07 11:00:50

2015-08-27 09:12:58

大数据

2015-08-27 10:50:15

2013-02-21 16:36:09

大数据
点赞
收藏

51CTO技术栈公众号