神经网络求解新思路:OpenAI用线性网络计算非线性问题

人工智能 深度学习
我们展示了深度线性网络(使用浮点运算实现)实际上并不是线性的,它可以执行非线性计算。我们利用这一点使用进化策略在线性网络中寻找参数,使我们能够解决重要问题。

[[205570]]

我们展示了深度线性网络(使用浮点运算实现)实际上并不是线性的,它可以执行非线性计算。我们利用这一点使用进化策略在线性网络中寻找参数,使我们能够解决重要问题。

神经网络通常由一个线性层和非线性函数(比如 tanh 和修正线性单元 ReLU)堆栈而成。如果没有非线性,理论上一连串的线性层和单一的线性层在数学上是等价的。因此浮点运算是非线性的,并足以训练深度网络。这很令人惊讶。

背景

计算机使用的数字并不是***的数学对象,而是使用有限个比特的近似表示。浮点数通常被计算机用于表示数学对象。每一个浮点数由小数和指数的组合构成。在 IEEE 的 float32 标准中,小数分配了 23 个比特,指数分配了 8 个比特,还有一个比特是表示正负的符号位 sign。

按照这种惯例和二进制格式,以二进制表示的最小非零正常数是 1.0..0 x 2^-126,以下用 min 来指代。而下一个可表示的数是 1.0..01 x 2^-126,可以写作 min+0.0..01 x 2^-126。很显然,***和第二个数之间的 gap 比 0 和 min 之间的 gap 小了 2^20 倍。在 float32 标准中,当一个数比最小的可表示数还小的时候,则该数字将被映射为零。因此,近邻零的所有包含浮点数的计算都将是非线性的。(而反常数是例外,它们在一些计算硬件上可能不可用。在我们的案例中通过设置归零(flush to zero,FTZ)解决这个问题,即将所有的反常数当成零。)

因此,虽然通常情况下,所有的数字和其浮点数表示之间的区别很小,但是在零附近会出现很大的 gap,而这个近似误差可能带来很大影响。

这会导致一些奇怪的影响,一些常用的数学规则无法发挥作用。比如,(a + b) x c 不等于 a x c + b x c。

比如,如果你设置 a = 0.4 x min,b = 0.5 x min,c = 1 / min。

则:(a+b) x c = (0.4 x min + 0.5 x min) x 1 / min = (0 + 0) x 1 / min = 0。

然而:(a x c) + (b x c) = 0.4 x min / min + 0.5 x min x 1 / min = 0.9。

再比如,我们可以设置 a = 2.5 x min,b = -1.6 x min,c = 1 x min。

则:(a+b) + c = (0) + 1 x min = min

然而:(b+c) + a = (0 x min) + 2.5 x min = 2.5 x min。

在这种小尺度的情况下,基础的加法运算变成非线性的了!

使用进化策略利用非线性

我们想知道这种内在非线性是否可以作为计算非线性的方法,如果可以,则深度线性网络能够执行非线性运算。挑战在于现代微分库在非线性尺度较小时会忽略它们。因此,使用反向传播利用非线性训练神经网络很困难或不可能。

我们可以使用进化策略(ES),无需依赖符号微分(symbolic differentiation)法就可以评估梯度。使用进化策略,我们可以将 float32 的零点邻域(near-zero)行为作为计算非线性的方法。深度线性网络通过反向传播在 MNIST 数据集上训练时,可获取 94% 的训练准确率和 92% 的测试准确率(机器之心使用三层全连接网络可获得 98.51% 的测试准确率)。相对而言,相同的线性网络使用进化策略训练可获取大于 99% 的训练准确率、96.7% 的测试准确率,确保激活值足够小而分布在 float32 的非线性区间内。训练性能的提升原因在于在 float32 表征中使用非线性的进化策略。这些强大的非线性允许任意层生成新的特征,这些特征是低级别特征的非线性组合。以下是网络结构:

  1. x = tf . placeholder ( dtype = tf . float32 , shape =[ batch_size , 784 ]) 
  2.  
  3. y = tf . placeholder ( dtype = tf . float32 , shape =[ batch_size , 10 ]) 
  4.  
  5. w1 = tf . Variable ( np . random . normal ( scale = np . sqrt ( 2. / 784 ), size =[ 784 , 512 ]). astype ( np . float32 )) 
  6.  
  7. b1 = tf . Variable ( np . zeros ( 512 , dtype = np . float32 )) 
  8.  
  9. w2 = tf . Variable ( np . random . normal ( scale = np . sqrt ( 2. / 512 ), size =[ 512 , 512 ]). astype ( np . float32 )) 
  10.  
  11. b2 = tf . Variable ( np . zeros ( 512 , dtype = np . float32 )) 
  12.  
  13. w3 = tf . Variable ( np . random . normal ( scale = np . sqrt ( 2. / 512 ), size =[ 512 , 10 ]). astype ( np . float32 )) 
  14.  
  15. b3 = tf . Variable ( np . zeros ( 10 , dtype = np . float32 )) 
  16.  
  17. params = [ w1 , b1 , w2 , b2 , w3 , b3 ] 
  18.  
  19. nr_params = sum ([ np . prod ( p . get_shape (). as_list ()) for p in params ]) 
  20.  
  21. scaling = 2 ** 125 
  22.  
  23. def get_logits ( par ): 
  24.  
  25. h1 = tf . nn . bias_add ( tf . matmul ( x , par [ 0 ]), par [ 1 ]) / scaling 
  26.  
  27. h2 = tf . nn . bias_add ( tf . matmul ( h1 , par [ 2 ]) , par [ 3 ] / scaling ) 
  28.  
  29. o = tf . nn . bias_add ( tf . matmul ( h2 , par [ 4 ]), par [ 5 ]/ scaling )* scaling 
  30.  
  31. return o 

在上面的代码中,我们可以看出该网络一共 4 层,***层为 784(28*28)个输入神经元,这个数量必须和 MNIST 数据集中单张图片所包含像素点数相同。第二层与第三层都为隐藏层且每层有 512 个神经元,***一层为输出的 10 个分类类别。其中每两层之间的全连接权重为服从正态分布的随机初始化值。nr_params 为加和所有参数的累乘。下面定义一个 get_logist() 函数,该函数的输入变量 par 应该可以是上面定义的 nr_params,因为定义添加偏置项的索引为 1、3、5,这个正好和前面定义的 nr_params 相符,但 OpenAI并没有给出该函数的调用过程。该函数***个表达式计算***层和第二层之间的前向传播结果,即计算输入 x 与 w1 之间的乘积再加上缩放后的偏置项(前面 b1、b2、b3 都定义为零向量)。后面两步的计算也基本相似,***返回的 o 应该是图片识别的类别。不过 OpenAI 只给出了网络架构,而并没有给出优化方法和损失函数等内容。

责任编辑:武晓燕 来源: 36大数据
相关推荐

2024-07-10 11:09:35

2024-07-02 12:16:30

2022-02-15 23:38:22

Python机器学习算法

2017-03-10 12:16:46

机器学习

2018-04-23 16:27:27

线性网络语音合成自适应

2021-07-13 09:36:26

神经网络PyTorch框架

2024-11-07 08:26:31

神经网络激活函数信号

2022-07-06 13:13:36

SWIL神经网络数据集

2018-07-03 16:10:04

神经网络生物神经网络人工神经网络

2020-10-21 14:52:00

神经网络AI算法

2009-01-11 10:27:00

小型办公室网络组建

2020-03-26 09:00:00

神经网络AI人工智能

2023-12-27 14:17:11

深度学习人工智能激活函数

2019-10-29 08:50:31

深度学习编程人工智能

2017-05-31 12:59:44

神经网络深度学习

2022-06-14 13:55:30

模型训练网络

2017-09-10 07:07:32

神经网络数据集可视化

2021-02-07 09:40:19

Python神经网络人工智能

2020-05-27 11:10:54

KerasLSTM神经网络

2020-12-19 11:05:57

循环神经网络PyTorch神经网络
点赞
收藏

51CTO技术栈公众号