58速运“里程计算”优化与演进

开发 开发工具
58速运货物运输,滴滴快递网约车,司机端都是按照行驶公里数收费的,所以“里程”的准确性,是这类业务的一个核心难题,“里程计算”方案演进,以及其中优化思想,是本文要讨论的问题。

58速运货物运输,滴滴快递网约车,司机端都是按照行驶公里数收费的,所以“里程”的准确性,是这类业务的一个核心难题,“里程计算”方案演进,以及其中优化思想,是本文要讨论的问题。

一、直接调用地图API

这是最容易想到的方法,最省事,但司机往往不是按照预定的路线行驶的,很有可能因为堵车、道路封闭等改变路线,所以直接调用地图API,一次性计算出一个预估值,不太靠谱

优化方案:根据实际路线计算里程

二、司机APP实时计算增量里程,服务端存储总里程

过程如下:

(1)货车位置不停的在改变,司机APP每隔一段时间(例如1s)记录一次GPS,即打点

(2)实时计算相邻两点的距离,上报服务端

(3)服务端存储总里程

潜在问题:GPS可能不准确,偶尔会有噪点,一旦有噪点,相邻两点的距离会很远,导致最终总里程可能比实际里程远

优化方案:不能实时计算增量,而应该先打点,最终统一计算,这样才有机会去除噪点

三、打点上报服务端,服务端统一计算里程

过程如下:

(1)货车位置不停的在改变,司机APP每秒打一个点,上报服务端

(2)服务端将打点落地,记录数据库

(3)到达目的地后,服务端对于所有点进行统一处理,一次性计算里程,可以去除噪点

潜在问题:假设每单平均货运时长1小时,即每单要打3600个点,58速运每天100w订单,即总共要打36亿个点,每个点对应数据库一个写请求,则数据库的写压力大概在每秒4w次,扛不住

优化方案:批量写是一种常见的降低数据库压力的方案

四、客户端实时打点,压缩后批量上传

过程如下:

(1)司机APP每秒在本地打点,每隔一段时间(例如20s),压缩,上报服务端,服务端压力从4w降低到2k

(2)服务端解压,批量写入队列

(3)队列中的点,每隔一段时间(例如2s)再写入数据库

优化成果:大大降低了数据库压力(由于存储量较大,实际优化的过程中,使用Hbase进行了优化存储)

其他问题:数据库压力降下来了,但到达目的地后,一个订单打的所有点计算里程,成本较高,如何减少计算量

优化方案:去除无效点

五、打点过滤,提高效率

什么样的打点是无效点,需要去除呢?

(1)噪点原则:连续打点,偏移量较大的噪点,需要去除

(2)同点原则:相同位置的点可以去除,因为移动路径为0

(3)速度原则:行驶速度超过合理范围的点,需要去除

(4)角度原则:理论上订单轨迹是平滑有序的,如果角度反复折回,可以视为无效点

潜在问题:如果司机APP有断网或者信号不好,可能会漏点,导致计算出的总距离小于实际距离,给司机带来损失

优化方案:补点

六、事后补点,数据修正,计算里程

如何进行补点,如何进行数据修正呢?

(1)补点:车辆行驶过程中,如果有中断路线,采用“地图路径规划”的方式补点

(2)修正:采用卡尔曼滤波算法,对轨迹进行整形

(3)计算里程:按照点到点的距离,进行累加

总结

“里程计算”的优化历程:

  • 直接调用地图API
  • 司机APP实时计算增量里程,服务端存储总里程
  • 打点上报服务端,服务端统一计算里程
  • 客户端实时打点,压缩后批量上传
  • 打点过滤,提高效率
  • 事后补点,数据修正,计算里程

“里程计算”业务并不是所有公司都会涉及到,但其中的优化思路,很多还是可以借鉴的:

  • 单次与统筹:客户端单次记录与计算是不靠谱的,应该由服务端来实施,综合所有数据,去除噪点
  • 单次与批量:单次操作,压力较大,不好压缩;批量操作能大大降低压力,并且压缩比高
  • 全量与过滤:全量计算成本较高,过滤掉无效数据,能够降低计算量,提高精确性
  • 补充与修正:对于少量缺少的数据,可以预测补充,平滑修正

【本文为51CTO专栏作者“58沈剑”原创稿件,转载请联系原作者】

戳这里,看该作者更多好文

责任编辑:赵宁宁 来源: 51CTO专栏
相关推荐

2018-08-21 09:22:46

58速运架构DB

2018-06-14 21:47:46

WOT沈剑58速运

2018-03-24 12:21:21

58速运微服务架构智能云

2024-02-22 10:25:10

AI视觉

2018-03-15 11:23:59

微服务架构实践

2023-11-07 10:31:25

自动驾驶系统

2017-12-14 09:35:10

58速运订单调度

2020-04-03 13:12:09

函数架构 Serverless

2017-10-23 09:10:52

2013-02-27 11:13:17

云计算运维阿里云开发者

2013-03-22 14:51:34

云计算运维阿里云

2021-04-13 13:21:58

CPUGPU异构

2012-06-12 11:43:15

网络优化电话网络

2010-01-21 22:19:25

网络优化运维管理摩卡软件

2013-09-13 16:15:29

柯旻运维云计算运维

2010-06-25 16:43:41

CDMA2000

2019-01-15 18:03:54

数据库运维 技术

2015-07-17 08:23:06

品高云计算

2010-03-25 10:43:24

2018-06-13 09:56:14

运维智能无人化
点赞
收藏

51CTO技术栈公众号