多对多业务,数据库水平切分架构一次搞定

开发 开发工具
本文将以“好友中心”为例,介绍“多对多”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践。

一、什么是多对多关系

所谓的“多对多”,来自数据库设计中的“实体-关系”ER模型,用来描述实体之间的关联关系,一个学生可以选修多个课程,一个课程可以被多个学生选修,这里学生与课程时间的关系,就是多对多关系。

二、好友中心业务分析

好友关系主要分为两类,弱好友关系与强好友关系,两类都有典型的互联网产品应用。

弱好友关系的建立,不需要双方彼此同意:

  • 用户A关注用户B,不需要用户B同意,此时用户A与用户B为弱好友关系,对A而言,暂且理解为“关注”;
  • 用户B关注用户A,也不需要用户A同意,此时用户A与用户B也为弱好友关系,对A而言,暂且理解为“粉丝”;

微博粉丝是一个典型的弱好友关系应用。

强好友关系的建立,需要好友关系双方彼此同意:

  • 用户A请求添加用户B为好友,用户B同意,此时用户A与用户B则互为强好友关系,即A是B的好友,B也是A的好友;

QQ好友是一个典型的强好友关系应用。

好友中心是一个典型的多对多业务,一个用户可以添加多个好友,也可以被多个好友添加,其典型架构为:

  • friend-service:好友中心服务,对调用者提供友好的RPC接口
  • db:对好友数据进行存储

三、弱好友关系-元数据简版实现

通过弱好友关系业务分析,很容易了解到,其核心元数据为:

  1. guanzhu(uid, guanzhu_uid); 
  2. fensi(uid, fensi_uid); 

其中:

  • guanzhu表,用户记录uid所有关注用户guanzhu_uid
  • fensi表,用来记录uid所有粉丝用户fensi_uid

需要强调的是,一条弱关系的产生,会产生两条记录,一条关注记录,一条粉丝记录。

例如:用户A(uid=1)关注了用户B(uid=2),A多关注了一个用户,B多了一个粉丝,于是:

  • guanzhu表要插入{1, 2}这一条记录,1关注了2
  • fensi表要插入{2, 1}这一条记录,2粉了1

(1) 如何查询一个用户关注了谁呢?

回答:在guanzhu的uid上建立索引:

  1. select * from guanzhu where uid=1

即可得到结果,1关注了2。

(2) 如何查询一个用户粉了谁呢?

回答:在fensi的uid上建立索引:

  1. select * from fensi where uid=2

即可得到结果,2粉了1。

四、强好友关系-元数据实现一

通过强好友关系业务分析,很容易了解到,其核心元数据为:

  1. friend(uid1, uid2); 

其中:

  • uid1,强好友关系中一方的uid
  • uid2,强好友关系中另一方的uid

(1) uid=1的用户添加了uid=2的用户,双方都同意加彼此为好友,这个强好友关系,在数据库中应该插入记录{1, 2}还是记录{2,1}呢?

回答:都可以

为了避免歧义,可以人为约定,插入记录时uid1的值必须小于uid2。

例如:有uid=1,2,3三个用户,他们互为强好友关系,那边数据库中可能是这样的三条记录

  1. {1, 2} 
  2. {2, 3} 
  3. {1, 3} 

(2) 如何查询一个用户的好友呢?

回答:假设要查询uid=2的所有好友,只需在uid1和uid2上建立索引,然后:

  1. select * from friend where uid1=2 
  2. union 
  3. select * from friend where uid2=2 

即可得到结果。

作业,为何不使用:

  1. select * from friend uid1=2 or uid2=2 

五、强好友关系-元数据实现二

强好友关系是弱好友关系的一个特例,A和B必须互为关注关系(也可以说,同时互为粉丝关系),即也可以使用关注表和粉丝表来实现:

  1. guanzhu(uid, guanzhu_uid); 
  2. fensi(uid, fensi_uid); 

例如:用户A(uid=1)和用户B(uid=2)为强好友关系,即相互关注:

用户A(uid=1)关注了用户B(uid=2),A多关注了一个用户,B多了一个粉丝,于是:

  • guanzhu表要插入{1, 2}这一条记录
  • fensi表要插入{2, 1}这一条记录

同时,用户B(uid=2)也关注了用户A(uid=1),B多关注了一个用户,A多了一个粉丝,于是:

  • guanzhu表要插入{2, 1}这一条记录
  • fensi表要插入{1, 2}这一条记录

六、数据冗余是实现多对多关系水平切分的常用实践

对于强好友关系的两类实现:

  • friend(uid1, uid2)表
  • 数据冗余guanzhu表与fensi表(后文称正表T1与反表T2)

在数据量小时,看似无差异,但数据量大时,数据冗余的优势就体现出来了:

  • friend表,数据量大时,如果使用uid1来分库,那么uid2上的查询就需要遍历多库
  • 正表T1与反表T2通过数据冗余来实现好友关系,{1, 2}{2,1}分别存在于两表中,故两个表都使用uid来分库,均只需要进行一次查询,就能找到对应的关注与粉丝,而不需要多个库扫描

数据冗余,是多对多关系,在数据量大时,数据水平切分的常用实践。

七、如何进行数据冗余

接下来的问题转化为,好友中心服务如何来进行数据冗余,常见有三种方法。

方法一:服务同步冗余

服务同步冗余

顾名思义,由好友中心服务同步写冗余数据,如上图1-4流程:

  • 业务方调用服务,新增数据
  • 服务先插入T1数据
  • 服务再插入T2数据
  • 服务返回业务方新增数据成功

优点:

  • 不复杂,服务层由单次写,变两次写
  • 数据一致性相对较高(因为双写成功才返回)

缺点:

  • 请求的处理时间增加(要插入次,时间加倍)
  • 数据仍可能不一致,例如第二步写入T1完成后服务重启,则数据不会写入T2

如果系统对处理时间比较敏感,引出常用的第二种方案

方法二:服务异步冗余

服务异步冗余

数据的双写并不再由好友中心服务来完成,服务层异步发出一个消息,通过消息总线发送给一个专门的数据复制服务来写入冗余数据,如上图1-6流程:

  • 业务方调用服务,新增数据
  • 服务先插入T1数据
  • 服务向消息总线发送一个异步消息(发出即可,不用等返回,通常很快就能完成)
  • 服务返回业务方新增数据成功
  • 消息总线将消息投递给数据同步中心
  • 数据同步中心插入T2数据

优点:

  • 请求处理时间短(只插入1次)

缺点:

  • 系统的复杂性增加了,多引入了一个组件(消息总线)和一个服务(专用的数据复制服务)
  • 因为返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)
  • 在消息总线丢失消息时,冗余表数据会不一致

如果想解除“数据冗余”对系统的耦合,引出常用的第三种方案

方法三:线下异步冗余

线下异步冗余

数据的双写不再由好友中心服务来完成,而是由线下的一个服务或者任务来完成,如上图1-6流程:

  • 业务方调用服务,新增数据
  • 服务先插入T1数据
  • 服务返回业务方新增数据成功
  • 数据会被写入到数据库的log中
  • 线下服务或者任务读取数据库的log
  • 线下服务或者任务插入T2数据

优点:

  • 数据双写与业务完全解耦
  • 请求处理时间短(只插入1次)

缺点:

  • 返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)
  • 数据的一致性依赖于线下服务或者任务的可靠性

上述三种方案各有优缺点,可以结合实际情况选取。

数据冗余固然能够解决多对多关系的数据库水平切分问题,但又带来了新的问题,如何保证正表T1与反表T2的数据一致性呢?

八、如何保证数据的一致性

上一节的讨论可以看到,不管哪种方案,因为两步操作不能保证原子性,总有出现数据不一致的可能,高吞吐分布式事务是业内尚未解决的难题,此时的架构优化方向,并不是完全保证数据的一致,而是尽早的发现不一致,并修复不一致。

最终一致性,是高吞吐互联网业务一致性的常用实践。更具体的,保证数据最终一致性的方案有三种。

方法一:线下扫面正反冗余表全部数据

线下扫面正反冗余表全部数据

如上图所示,线下启动一个离线的扫描工具,不停的比对正表T1和反表T2,如果发现数据不一致,就进行补偿修复。

优点:

  • 比较简单,开发代价小
  • 线上服务无需修改,修复工具与线上服务解耦

缺点:

  • 扫描效率低,会扫描大量的“已经能够保证一致”的数据
  • 由于扫描的数据量大,扫描一轮的时间比较长,即数据如果不一致,不一致的时间窗口比较长

有没有只扫描“可能存在不一致可能性”的数据,而不是每次扫描全部数据,以提高效率的优化方法呢?

方法二:线下扫描增量数据

线下扫描增量数据

每次只扫描增量的日志数据,就能够极大提高效率,缩短数据不一致的时间窗口,如上图1-4流程所示:

  • 写入正表T1
  • 第一步成功后,写入日志log1
  • 写入反表T2
  • 第二步成功后,写入日志log2

当然,我们还是需要一个离线的扫描工具,不停的比对日志log1和日志log2,如果发现数据不一致,就进行补偿修复

优点:

  • 虽比方法一复杂,但仍然是比较简单的
  • 数据扫描效率高,只扫描增量数据

缺点:

  • 线上服务略有修改(代价不高,多写了2条日志)
  • 虽然比方法一更实时,但时效性还是不高,不一致窗口取决于扫描的周期

有没有实时检测一致性并进行修复的方法呢?

方法三:实时线上“消息对”检测

实时线上“消息对”检测

这次不是写日志了,而是向消息总线发送消息,如上图1-4流程所示:

  • 写入正表T1
  • 第一步成功后,发送消息msg1
  • 写入反表T2
  • 第二步成功后,发送消息msg2

这次不是需要一个周期扫描的离线工具了,而是一个实时订阅消息的服务不停的收消息。

假设正常情况下,msg1和msg2的接收时间应该在3s以内,如果检测服务在收到msg1后没有收到msg2,就尝试检测数据的一致性,不一致时进行补偿修复

优点:

  • 效率高
  • 实时性高

缺点:

  • 方案比较复杂,上线引入了消息总线这个组件
  • 线下多了一个订阅总线的检测服务

however,技术方案本身就是一个投入产出比的折衷,可以根据业务对一致性的需求程度决定使用哪一种方法。

九、总结

文字较多,希望尽量记住如下几点:

  • 好友业务是一个典型的多对多关系,又分为强好友与弱好友
  • 数据冗余是一个常见的多对多业务数据水平切分实践
  • 冗余数据的常见方案有三种:服务同步冗余、服务异步冗余、线下异步冗余
  • 数据冗余会带来一致性问题,高吞吐互联网业务,要想完全保证事务一致性很难,常见的实践是最终一致性
  • 最终一致性的常见实践是,尽快找到不一致,并修复数据,常见方案有三种:线下全量扫描法、线下增量扫描法、线上实时检测法

【本文为51CTO专栏作者“58沈剑”原创稿件,转载请联系原作者】

戳这里,看该作者更多好文

责任编辑:赵宁宁 来源: 51CTO专栏
相关推荐

2017-07-11 16:44:04

数据库水平切分架构

2017-06-19 16:45:41

数据库水平切分用户中心

2017-06-12 11:09:56

计数架构数据库

2009-06-04 16:14:22

Hibernate一对Hibernate一对Hibernate多对

2023-11-29 12:12:24

Oceanbase数据库

2017-03-14 14:09:08

数据库Oracle备份

2017-09-08 15:34:01

2021-08-12 09:48:21

Webpack Loa工具Webpack

2010-04-15 09:09:02

Hibernate

2009-01-20 09:22:09

NGN下一代网络电信

2022-11-02 08:00:00

数据库多区域应用程序云平台

2019-10-12 16:15:13

MySQL数据库多实例

2024-04-26 10:12:38

混合训练AI集群

2021-10-14 10:53:20

数据库查询超时

2023-11-28 07:45:48

Rust自动化测试

2024-09-18 14:54:53

2011-08-11 18:54:01

数据库分页查询

2009-09-22 09:55:58

Hibernate实例

2021-10-26 08:00:00

数据库架构技术

2011-04-18 13:36:42

点赞
收藏

51CTO技术栈公众号