DeepTraffic:MIT模拟游戏利用深度学习来缓解交通拥堵

人工智能 深度学习
被堵在路上是个又丧又费钱的事儿,除了让人头疼还可能导致错过约炮,交通堵塞使美国司机每年多花3000亿。Deep Traffic模拟典型的高速公路环境,其玩家使用深度学习来控制自己的汽车。该模拟使初学者对复杂的技术概念易于上手,而游戏化推动了专家开发全新的技术。

[[196857]]

被堵在路上是个又丧又费钱的事儿,除了让人头疼还可能导致错过约炮,交通堵塞使美国司机每年多花3000亿。

研究人员认为即使是少数的自动驾驶车也将会大大改善交通流。 Lex Fridman和他在MIT的团队创造了一个游戏,来加速实现这个设想。

Deep Traffic模拟典型的高速公路环境,其玩家使用深度学习来控制自己的汽车。该模拟使初学者对复杂的技术概念易于上手,而游戏化推动了专家开发全新的技术。

使用神经网络的交通模拟游戏

想象你在洛杉矶一个繁忙的高速公路上开车。您必须决定跟车距离,何时更换车道,以及如何在导航时避免撞到其他车辆。这就是所谓的路径规划。 有了Deep Traffic,任何人都可以设计和训练一个深度神经网络。

在上月于硅谷举行的GPU技术大会上,Fridman谈到了游戏如何依赖强化学习。在强化学习这种方法里,当神经网络采取所需动作就会得到奖励,由此方法实现人工智能。通过反复重复这些奖励,网络学会了该如何做。

在这个游戏中,神经网络控制着一条沿着繁忙的高速公路行驶的红色汽车,目标是尽可能快地航行。初学者在浏览器中使用JavaScript来操纵参数并改变他们的驾驶行为。高玩通过OpenAI Gym进入DeepTraffic,并使用Python来训练网络。

DeepTraffic玩家使用深度学习技术,在路上快速行进 

竞速:DeepTraffic玩家使用深度学习技术,在路上快速行进

DeepTraffic最初是为Fridman在MIT教授的课程而设计。当课程内容和游戏甫一向公众开放,便受到广泛欢迎。凭借迄今已有的超过12,000份数据,DeepTraffic***竞争力。用户以他们自己的网络所能达到的最快速度,在排行榜上交锋。

游戏因竞争而有趣,但真实世界的风险要高得多。自动驾驶车辆必须规划出从一个点到另一个点的安全路径。AI要求被给与一个艰难的驾驶任务。诸如DeepTraffic之类的教育工具有助于培养下一代AI开发人员以及改变汽车生态系统的平面解决方案。

DeepTraffic在线调试地址

DeepTraffic在线调试界面  

DeepTraffic在线调试界面 

责任编辑:庞桂玉 来源: 36大数据
相关推荐

2017-08-16 09:37:47

智慧停车停车场

2018-06-21 14:53:29

无人驾驶交通拥堵自动驾驶

2010-01-08 21:32:54

城市交通应急调度指挥玛左

2020-09-17 15:29:50

物联网大数据技术

2013-10-30 09:15:43

算法数据结构

2019-01-31 09:40:23

Linux开源模拟游戏

2017-05-14 15:50:01

大数据交通拥堵智能化

2015-08-05 17:12:47

智能交通华为

2016-06-06 10:52:40

高德

2018-01-26 13:20:12

滴滴AI技术交通难题

2021-11-24 17:48:30

深度学习风险预测

2016-08-12 00:04:44

大数据交通

2012-03-23 09:55:15

2013-10-30 09:54:32

2015-11-04 16:31:56

互联网+交通拥堵

2021-04-14 14:46:32

开源技术 软件

2022-08-01 11:15:26

MIT材料

2021-03-03 13:28:04

无人驾驶人工智能交通

2023-08-17 14:22:17

深度学习机器学习

2023-05-11 07:43:36

机器学习深度学习算法
点赞
收藏

51CTO技术栈公众号