产品运营数据分析框架应该包含哪些重要指标?

大数据 数据分析
借助数据分析工具,如国外的 Mixpanel、和国内的 GrowingIO,来持续监控你的北极星指标,在业务实践中不断优化。你的目标是为你的团队找到一个最适合现阶段的聚焦点,让大家在日常工作中能够齐心协力向着一个方向前进。

首先指标并不是一成不变的,它会根据你的行业、公司所处的阶段而改变;第二是我们很容易把指标找错,而只有正确的指标才能指导你的运营工作。

众所周知,新增用户、用户活跃度、停留时长、常用功能或者各渠道转化率等,都是很重要的用户行为数据,这些数据告诉我们,用户是谁?从哪里来?在网站/App 干了什么?这些数据应该成为数据分析的基础数据,我们可以基于这些行为数据去做更深度的分析。因为它们只能告诉你网站的大概情况,但是通常不太能很好地指导工作。

如何选择正确的数据指标?

[[190803]]

“ North Star Metric ” 北极星指标,又叫做“ OMTM ” One metric that matters , 唯一重要的指标。

之所以叫北极星指标,是因为这个指标一旦确立,就像北极星一样,高高闪耀在天空中,指引着全公司上上下下,向着同一个方向迈进。

一、为什么北极星指标那么重要?

找到公司的北极星指标,是做增长的第一步,也是至关重要的一步。为什么这么说?

第一,做增长涉及到公司运营的方方面面,没有一个明确的数据指标指引,很容易眉毛胡子一把抓,而无法有效地集中火力抓住重点。

第二,当公司到达一定规模,一个共同的目标可以帮助把团队调整到同一个方向上,并且明确任务的优先级。

第三,设定一个数据指标,能够大幅提高行动力。如同 YC 联合创始人 Paul Graham 所说:一旦你选定了你的目标,你只有一件事可以做,努力达到那个目标。通过这一个目标,你可以知道公司的状况,有针对性地上线各种项目和试验,然后观察有无成效。

二、两个选择数据指标的案例

如果上面的陈述还是让你觉得太枯燥,一起来听听关于北极星指标的两个故事吧。

1、美剧《硅谷》中的Pied Piper

最近大热的HBO美剧,Sillicon Valley 硅谷,刚刚出了三季,已经充分地俘获了广大马工和非马工的心。我的很多程序员朋友都在追,一致的评价是非常写实,而且几乎有点太写实了。从某搜索引擎大公司内部的浮夸文化,到形形色色的奇葩风险投资人,再到Pied Piper从一个程序员Richard的业余项目跌跌撞撞成长为独立的公司。

走过融资烧钱几度濒临破产又置之死地而后生的全过程,简直可以称为一部活脱脱华丽丽的硅谷真人秀。

[[190804]]

在第三季的倒数第二集,当投资人和公司员工兴奋地开 party 庆祝 Pied Piper 的重大里程碑500,000个安装用户时,公司的CEO Richard却处在巨大的恐慌中。

为什么?因为在这 500,000 次安装用户里,只有 19,000,也就是不到 4% 的日均活跃用户(DAU)。

安装数不用解释,日均活跃用户(DAU)在这里指的是每天至少登录 Pied Piper 平台一次的用户,用户下载多固然好,但是这里面有很多是因为刚刚上市的宣传,媒体报道和品牌效应,而高下载低活跃用户比例恰恰说明了产品还存在巨大的问题。

在接下来的剧集里,Richard 和他的团队走上了想法设法增加 DAU 的漫漫长路,无所不用其极,甚至还一度采用了从印度皮包公司买点击的办法。

[[190805]]

Richard自带主角光环,Piped Piper 很可能会逢凶化吉。在现实世界中,如果你选择了一个错误的指标作为公司的北极星指标,而你却不自知,你会把公司置于一个十分危险的境地。

2、Facebook 如何突破 MySpace 重围

早在Facebook成立之前,美国社交网络的老大是MySpace。MySpace 历史久,用户多,还有东家加大金主新闻集团撑腰,从任何一个角度看都应该可以轻易碾压由几个大学辍学生创办的 Facebook,最终却输得一败涂地。

其中的原因当然不只一个,但是有一个有趣的区别是:MySpace 公司运营的主要指标是注册“用户数”,而Facebook在Mark的指引下,在成立的早期就把“月活跃用户数”作为对外汇报和内部运营的主要指标。

[[190806]]

你可能听说过所谓的虚荣指标,“Vanity Metric”。 我们并不能说注册用户数是一个彻头彻脑的 Vanity Metric,但它却有”虚荣“的成分在。怎么讲?如果 Myspace 号称自己有 100 万注册用户,这里面有多少是5年前注册的,有多少注册之后从来没有二次访问过,有多少试用了几次就成为了僵尸用户,有多少仍然使用但是半年才上线一次?

100 万的注册用户可能在投资人那里看起来好看,在员工那里说起来好听,但在公司的内部运营上,它也可能让 MySpace 错误估计了形势,走偏了方向,抓错了重点,最终在和 Facebook 的较量中败下阵来。

产品运营数据分析框架应该包含哪些重要指标?

相比之下,从“用户数”到“月活跃用户数”,看起来只是多了三个字,却确保了Facebook内部的任何决策都是指向真实持续的活跃用户增长。我最佩服Mark Zuckburg的一点是,他不仅把月活跃用户数作为内部的北极星指标,还坚持对外汇报同一个指标,以此来确保监督公司的运营策略永远诚实地对用户价值负责,而不是追求简单粗暴的短期增长。

要知道这一点并不容易做到,现在很多公司仍然选择对投资人披露一个注过水的“半虚荣指标”,以求数字好看。

数据指标从来都不只是指标,它代表了管理层对用户价值和公司成功关系之间的理解,也会指导每个基层员工在日常工作中的一次次决策和执行。走正,和跑偏之间,也许只有一个北极星指标的区别。

三、如何找到北极星指标

说说我自己的经验吧,我最近加入了一家做个人金融类的App公司,主要负责用户留存。我入职之后做的第一件事情不是大张旗鼓地开始做增长实验,而是开展了一系列数据分析和内部讨论,最终我的第一个建议是停止使用公司现有的留存指标,转而使用一个新的指标。

得到整个团队的认同之后,然后才开始针对新指标的增长实验。通过上面两个故事,我想你不难明白我为什么要把这个作为第一步。

1、衡量北极星指标的6个标准

那么,如何找到一个合适的北极星指标呢?

首先声明,这个过程并不是一蹴而就的事情,也可能需要多次的尝试和改版。开始之前,把你脑子里有的一些指标写下来,问自己下面一些问题,可能会帮助你找到大概的方向:

a、你的产品的核心价值是什么?这个指标可以让你知道你的用户体验到了这种价值吗?

比如说,我现在公司做的是投资 App,那么用户的核心价值就是投资,所以这个北极星指标应该和投资有关;

b、这个指标能够反映用户的活跃程度吗?

在上面的例子里,Myspace 的“注册用户数” 就没有反应用户的活跃程度;

c、如果这个指标变好了,是不是能说明你的整个公司是在向好的方向发展?

比如说,对于 Uber 来说,如果只是把注册司机数作为北极星指标,显然就忽略了乘客这一方面。因此 Uber 的北极星指标应该能够反映司机和乘客的供需平衡,所以“总乘车数”就是更为合适的一个指标。

d、这个指标是不是很容易被你的整个团队理解和交流呢?

一般来说,建议选一个绝对数作为北极星指标,而不是比例或百分比:比如说,“总订单数”就比“订单额超过 100 元的订单比例”好理解。

e、这个指标是一个先导指标,还是一个滞后指标?

比如说,SaaS 公司喜欢使用收入作为北 极星指标,这不是一个坏指标,但是它确是一个滞后指标。有的用户很可能已经停止使用几个月了,却还在付月费。在这种情况下,”月活跃用户数“可能是一个更好的先导指标。

f、这个指标是不是一个可操作的指标?

简单地说,如果对于一个指标,你什么也做不了,那它对你来说相当于不存在。

2、3 个案例搞清北极星指标

几个北极星指标的例子:

产品运营数据分析框架应该包含哪些重要指标?

3、在业务实践中不断优化

最后,不要苛求完美,不要试图一步到位,寻找北极星指标也不是一道只有唯一解的数学题,很多指标之间都有相关性,选哪个并没有本质区别。

产品运营数据分析框架应该包含哪些重要指标?

借助数据分析工具,如国外的 Mixpanel、和国内的GrowingIO,来持续监控你的北极星指标,在业务实践中不断优化。你的目标是为你的团队找到一个最适合现阶段的聚焦点,让大家在日常工作中能够齐心协力向着一个方向前进。

毕竟,任何方法论都是为了帮助你更好地达成目标。不管是北极星,还是南极星,只要能照着我们走到终点,都是好星星。

责任编辑:未丽燕 来源: 36大数据
相关推荐

2021-04-23 14:16:13

数据分析师数据指标运营工作

2015-06-17 14:39:23

大数据大数据分析

2023-10-11 11:34:54

数据分析运营

2023-05-15 12:56:32

运营数据分析

2022-10-18 11:47:08

数据分析运营直播

2020-09-08 12:48:19

数据分析图表互联网

2018-06-20 17:14:01

大数据

2014-04-22 10:00:09

手游数据分析精细化运营

2017-02-09 17:51:18

数据分析数据系统互联网

2014-06-04 14:20:24

手游数据指标

2022-01-14 12:48:07

数据分析关键指标产品

2024-10-09 11:57:34

2021-11-10 05:00:58

数据分析运营

2017-11-02 14:23:04

易观方舟数据分析

2014-04-24 13:05:07

百度移动

2017-10-24 05:28:00

数据分析大数据数据

2011-06-21 16:58:09

外链

2022-03-21 13:57:00

大数据数据分析技术

2023-05-06 10:43:21

开源数据分析

2017-01-22 15:55:54

点赞
收藏

51CTO技术栈公众号