MySQL并发引起的死锁问题

数据库 MySQL
平台的某个数据库上面有近千个连接,每个连接对应一个爬虫,爬虫将爬来的数据放到cdb里供后期分析查询使用。前段时间经常出现cdb查询缓慢,cpu占有率高的现象。通过show processlist后发现,大量的连接卡在了执行INSERT ... ON DUPLICATE KEY UPDATE这样的语句上面。

背景:

平台的某个数据库上面有近千个连接,每个连接对应一个爬虫,爬虫将爬来的数据放到cdb里供后期分析查询使用。前段时间经常出现cdb查询缓慢,cpu占有率高的现象。通过show processlist后发现,大量的连接卡在了执行INSERT ... ON DUPLICATE KEY UPDATE这样的语句上面。难道并发执行INSERT ... ON DUPLICATE KEY UPDATE会导致cpu负荷直线上升吗,下面我们做一个实验。

实验:

先创建一张表TestA:

CREATE TABLE `TestA` (  
`id` int(11) NOT NULL,  
`num` int(1) DEFAULT NULL,  
PRIMARY KEY (`id`)  
ENGINE=InnoDB DEFAULT CHARSET=utf8; 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

再编写一个压测测试脚本,分别在并发为1、2、5、10,20,50,100,125,200的情况下测试执行1000次 INSERT INTO TestA VALUES (1,1) ON DUPLICATE KEY UPDATE num=num+1语句。

import gevent,time  
from gevent import monkey  
gevent.monkey.patch_socket()  
import pymysql  
total=1000 
def TestSql(num):  
start=time.time()  
def goodquery(sql,i):  
db = pymysql.connect(host = 'localhost'user = 'root',passwd='root'db'test',autocommit=True)  
cursor = db.cursor()  
cnt=total/num  
sqlsql=sql.format(thread_id=i)  
for i in xrange(cnt):  
cursor.execute(sql)  
cursor.close()  
db.close()  
sql='INSERT INTO `TestA` VALUES (1,1) ON DUPLICATE KEY UPDATE num=num+1;' 
jobs = [gevent.spawn(goodquery, sql,i) for i in range(num)]  
gevent.joinall(jobs)  
restime.time()-start  
return res  
sample=[1,2,5,10,20,50,100,125,200]  
x=[TestSql(x) for x in sample]  
print x  
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.

运行结果如下图,随着并发数的增加执行sql语句耗时呈现先下降后增加的趋势,与之相对应的是cpu使用率随着并发数增加不断增加。可以看出,当并发数大于一定125的时候,系统发生了雪崩,性能急剧下降。而在图上没有标出来的是,当并发数大于200的时候,mysql直接返回了Deadlock found when trying to get lock; try restarting transaction错误,已经无法正常执行语句了。

先下降后增长的趋势 

分析:

通过perf来分析造成上述雪崩的原因,发现是卡在了lock_rec_get_prev函数上面。

通过perf来分析造成上述雪崩的原因,发现是卡在了lock_rec_get_prev函数上面 

INSERT INTO TestA VALUES (1,1) ON DUPLICATE KEY UPDATE num=num+1 这个语句先在表TestA中找到是否存在id=1的行,因为id是主键,所以很快就定位到这一行上面。接下来需要执行update操作,在执行update之前需要获取该行的X锁。由于大量的连接都在执行这个操作,因此在抢夺行锁上产生了大量的竞争,因为行锁的分配也涉及了自旋锁。很多连接就卡在了自旋锁上面,白白的消耗了cpu资源。

解决方案:

其实最好的解决方案就是不要将这些爬虫直接连到mysql上面,通过一个中间层维护一个mysql的连接池,这样既能满足实际业务需求,也不会造成死锁。当然对于这个具体场景也是有简单的优化方案的。造成死锁的原因是大量连接对行锁进行争夺。既然这个行锁是性能瓶颈,那我们可以通过增加行锁来减少争夺的成本。

我们稍微改造一下表结构,添加一个联合主键(id、thread_id),每个连接都执行 INSERT INTO TestBVALUES (1,{thread_id},1) ON DUPLICATE KEY UPDATE num=num+1。这样每个连接都有了属于自己的行锁,不会互相争夺而产生死锁了。最后只需要执行一下sum就可以获取最终结果了。

CREATE TABLE `TestB` (  
`id` int(11) NOT NULL,  
`thread_id` int(11) NOT NULL,  
`num` int(1) DEFAULT NULL,  
PRIMARY KEY (`id`,`thread_id`)  
ENGINE=InnoDB DEFAULT CHARSET=utf8;  
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

压测测试结果如图,随着连接数的增加,耗时减少至稳定,cpu使用率增加至稳定。

随着连接数的增加,耗时减少至稳定,cpu使用率增加至稳定 

 

责任编辑:杜宁 来源: 腾云阁
相关推荐

2021-06-08 08:38:36

MySQL数据库死锁问题

2021-10-20 20:27:55

MySQL死锁并发

2018-05-29 11:44:22

数据库MySQL死锁

2023-07-18 09:24:04

MySQL线程

2024-04-02 11:22:01

死锁Java并发

2021-03-26 10:40:16

MySQL锁等待死锁

2010-09-07 15:04:21

SQL语句存储过程

2020-04-14 10:20:12

MySQL数据库死锁

2024-10-16 11:40:47

2025-01-20 13:20:00

MySQL数据迁移数据库

2025-03-03 04:00:00

线程安全CPU

2024-04-01 00:01:05

MySQL死锁DDL

2010-05-19 10:00:17

2017-06-07 16:10:24

Mysql死锁死锁日志

2023-11-09 11:56:28

MySQL死锁

2011-08-24 17:41:16

MySQL死锁

2022-08-05 11:55:13

FlutteriOS

2014-08-14 10:38:30

SQL Server查询

2017-06-14 22:11:57

数据库MySQL死锁

2018-04-10 13:02:51

HBase写入流程数据
点赞
收藏

51CTO技术栈公众号